Characterization and Application of a Novel Thermostable Glucoamylase Cloned from a Hyperthermophilic Archaeon Sulfolobus tokodaii

  • Njoroge, Rose Nyawira (Center for Agricultural Biomaterials and School of Agricultural Biotechnology, Seoul National University) ;
  • Li, Dan (National R&D Center for Soybean Processing, and College of Biological Science and Technology, Changchun University) ;
  • Park, Jong-Tae (Center for Agricultural Biomaterials and School of Agricultural Biotechnology, Seoul National University) ;
  • Cha, Hyun-Ju (Center for Agricultural Biomaterials and School of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Mi-Sun (Center for Agricultural Biomaterials and School of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Jung-Wan (Department of Biology, University of Incheon) ;
  • Park, Kwan-Hwa (Center for Agricultural Biomaterials and School of Agricultural Biotechnology, Seoul National University)
  • 발행 : 2005.12.31

초록

A gene for a putative glucoamylase, stg, of a hyperthermophilic archae on Sulfolobus tokodaii was cloned and expressed in Escherichia coli. The recombinant glucoamylase (STGA) had an optimal temperature of $80^{\circ}C$ and was extremely thermostable with a D-value of 17 hr. The pH optimum of the enzyme was 4.5. Being different from fungal glucoamylases, STGA hydrolyzed maltotriose (G3) most efficiently. Gel permeation chromatography and sedimentation equilibrium analytical ultracentrifugation analysis showed that the enzyme existed as a dimer. STGA was stable enough to hydrolyze liquefied com starch to glucose in 4 hr at $90^{\circ}C$ with a yield of95%. Comparison of the $k_{cat}$ values for the hydrolysis and the reverse reaction at $75^{\circ}C$ and $90^{\circ}C$ indicated that glucose production by STGA was more efficient at $90^{\circ}C$ than $75^{\circ}C$. Therefore, STGA showed great potential for application to the industrial glucose production process due to its high thermostability.

키워드

참고문헌

  1. Curr. Opin. Biotechnol. v.10 Improving operating performance of glucoamylase by mutagenesis Ford, C.
  2. Starch v.51 Protein engineering of glucoamylase to improve mdustnal performance-a review Reilly, P.J.
  3. J. Appl. Biochem. v.5 Fungal glucoamylase Manjunath, P.;Shenoy, B.C.;Raghavendra Rao, M.R.
  4. Starch Conversion;Industrial Enzymology Bentley, I.S.;Williams, E.C.;Godfrey, T.(ed.);West, S.(ed)
  5. Curr. Opin. Chem. Biol. v.6 Starch-hydrolyzing enzymes from thermophilic archaea and bacteria Bertoldo, C.; Antranikian, G.
  6. Biotechnol. Adv. v.19 Biotechnological uses of archaeal extremozymes Eichler, J.
  7. Curro Opin. Chem. Biol. v.3 Extremozymes Hough, D.W.;Danson, M.J.
  8. Appl. Microbiol. Biotechnol. v.31 Very stable enzymes from extremely thermophilic archaebacteria and eubacteria Bragger, J.M.;Daniel, R.M.;Coolbear, T.;Morgan, H.W.
  9. Appl. Environ. Microbiol. v.61 Purification and properties of extracellular amylase from the hyperther mophilic archaeon Thermococcus pmfundus DT5432 Chung, Y.C.;Kobayashi, T.;Kanai, H.;Akiba, T.;Kudo, T.
  10. J. Gen. Microbiol. v.86 Extremely thermophilic aCidophilic bactena convergent with Sulfolobus acidocaldarius de Rosa, M.;Gambacorta, A.;Bu'lock, J.D.
  11. J. Gen. Appl. Microbiol. v.44 Glucoarnylase from Thermom:aerobacterium thennosacchamlyticum: Sequence studies and analysIs of the macromolecular architecture of the enzyme Ducki, A.;Grundmann, O.;Konermann, L.;Mayer, F.;Hoppert, M.
  12. Starch/Strke v.54 Production, punfication, and characterization of Thermoanaerobacterium thermosaccharolyticum glucoamylase Feng, P.H.;Berensmeier, S.;Buchholz, K.;Reilly, P.J.
  13. Antonie Van Leeuwenhoek v.81 Novel thermoactive glucoamylases from the thermo~Cldophilic Archaea Thennoplasma acidophilum, Pzcrophzlus tomdus and Picrophilus oshimae Serour, E.;Antranikian, G.
  14. Appl. Microbiol. Biotechnol. v.56 Novel glucoamylase-type enzymes from Thermoactinomyces vulgaris and Methanococcus jannaschii whose genes are found in the flanking region of the a-am lyase genes Uotsu-Tomita, R.;Tonozuka, T.;Sakai, H.;Sakano, Y.
  15. J. Bacteriol. v.164 Regulation and genetic enhancement of glucoamylase and pullulanase production in Clostridium then:lOhydrosulfuricum Hyun, H.H.;Zeikus, J.G.
  16. Eur. J. Biochem. v.207 Molecular cloning of a glucoamylase gene from a thermophilic Clostridium and kinetics of the cloned enzyme Ohnlsh, H.;Kitamura, H.;Mmowa, T.;Sakai, H.;Ohta, T.
  17. DNA Res. v.8 Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7 Kawarabayasi, Y.;Hino, Y.;Horikawa, H.;Kim, I.N.;Takahashi, M.;Sekine, M.;Baba. S.;Ankai, A.;Kosugi, H.;Hosoyama, A.;Fukui, S.;Nagai, Y.;Nishijima, K.;Otsuka, R.;Nakazawa, H.;Takamiya, M.;Kato, Y.;Yoshlzawa, T.;Tanaka, T.;Kudoh, Y.;Yamazaki, J.;Kushida, N.;Oguchi, A.;Aoki, K.;Masuda, S.;Yanagii, M.;Nishimura, M.;Yamagishi, A.;Oshima, T.;Kikuchi, H.
  18. Modulation of Bacillus licheniformis amylases by Site-directed and deleted mutagenesis Cheong, T.K.
  19. Molecular cloning: a laboratory manual Sambrook, J.;Fritsch, E.F.;Maniatis, T.
  20. Nature v.227 Cleavage of structural proteins during the assembly of the head of bacteriophage $T_4$ Laemmli, U.K.
  21. Anal. Biochem. v.195 Miniaturization of three carbohydrate analyses usmg a mlcrosample plate reader Fox, J.D.;Robyt, J.F.
  22. Annu. Rev. Biophys. Bioeng. v.13 Amino acid, peptide, and protein volume in solution Zamyatnin, A.
  23. Biochim. Biophys. Acta v.1543 Glucoamylase: structure/function relationships, and protein engineering Sauer, J.;Sigurskjold, B.W.;Christensen, U.;Frandsen, T.P.;Mirgorodskaya, E.;Harrison, M.;Roepstorff, P.;Svensson, B.
  24. J. Mol. Biol. v.327 Crystal structure and evolution of a prokaryotic glucoamylase Aleshm, A.E.;Feng, P.H.;Honzatko, R.B.;Reilly, P.J.
  25. Appl. Environ. Microbiol. v.70 Properties of a novel thermostable glucoamylase from the hyperthermophilic archaeon, Sulfolobus solfataricus, in relation to starch processing Kim, M.S.;Park, J.T.;Kim, Y.W.;Lee, H.S.;Nyawira, R.;Shin, H.S.;Park, C.S.;Yoo, S.H.;Kim, Y.R.;Moon, T.W.;Park, K.H.
  26. J. Bacteriol. v.184 Characterization of an archaeal cyclodextrin glucanotransferase With a novel C-terminal domain Rashid, N.;Comista, J.;Ezaki, S.;Fukui, T.;Atomi, H.;Imanaka, T.
  27. Appl. Environ. Microbiol. v.65 Purification and characterization of an extremely thermostable cyclomaltodextrin glucano?transferase from a newly isolated hyperthermophilic archaeon, a Thermococcus sp Tachibana, Y.;Kuramura, A.;Shirasaka, N.;Suzuki, Y.;Yamamoto, T.;Fujiwara, S.;Takagi, M.;Imanaka, T.
  28. J. Ferment. Bioeng. v.82 Cloning and expression of the a-amylase gene from the hypertherthermophilic archaeon Pyrococcus sp. KOD1, and characterization of the enzyme Tachibana, Y.;Leclere, M.M.;Fujiwara, S.;Takagi, M.;Imanaka, T.
  29. J. Mol. Catal. B-Enz v.11 Properties of the recombinant ${\alpha}$-glucosidase from Sulfolobus solfataricus in relation to starch processing Martino, A.;Schiraldi, C.;Fusco, S.;Di Lemia, I.;Costabile, T.;Pellicano, T.;Marotta, M.;Generoso, M.;van der Oost, J.;Sensen, C.W.;Charlebois, R.L.;Moracci, M.;Rossi, M.;De Rosa, M.