Effects of Temperature, pH, and Potassium Lactate on Growth of Listeria monocytogenes in Broth

  • Jin, Sung-Sik (Division of Food and Biotechnology, Kangwon National University) ;
  • Khen, Bimal Kumar (Division of Food and Biotechnology, Kangwon National University) ;
  • Yoon, Ki-Sun (Center for Food Science and Technology, University of Maryland Eastern Shore) ;
  • Woo, Gun-Jo (Department of Food Microbiology, Korea Food and Drug Administration) ;
  • Hwan, In-Gyun (Department of Food Microbiology, Korea Food and Drug Administration) ;
  • Oh, Deog-Hwan (Division of Food and Biotechnology, Kangwon National University)
  • Published : 2005.12.31

Abstract

A total of 60 growth curves were generated with combinations of temperature, pH, and potassium lactate (PL) (60% (v/v) commercial solution) to determine the lag time (LT) and specific growth rate (SGR) of L. monocytogenes in broth. LT and SGR were significantly (P<0.05) affected by temperature, pH, concentration of PL, or the combined interaction of these factors. LT was extended and SGR was reduced significantly (P<0.05) by increased concentration of PL at lower temperature and pH. Listericidal effect was observed in the broth containing 2, 3, and 4% PL at pH 5.0 and $4^{\circ}C$. The antimicrobial activity of PL against L. monocytogenes increased when the pH of the medium was decreased at all temperatures tested. The results suggest that PL has antimicrobial properties to suppress the growth of L. monocytogenes. Potassium lactate has many potential applications as an antimicrobial additive in variety of refrigerated ready-to-eat foods.

Keywords

References

  1. Listeriosis in fann animals in Great Britian;Isolation and identification of microorganism of medical and veterinary importance Gitter, M.;Collins, C.H.(ed.);Grange, J.M.(ed.)
  2. J. Food Prot. v.49 Psychrotrophic growth and thermal inactivation of Listeria monocytogenes as a function of milk composition Donnelly, C.W.;Briggs, E.H.
  3. Food Technol. v.42 Disease characteristics of Listeria monocytogenes Marth, E.H.
  4. J. Food Prot. v.56 Influence of Temperature, pH, and Glycerol Monolaurate on Growth and Survival of Listeria monocytogenes Oh, D.H.;Marshal, D.L.
  5. Int. J. Food Microbiol. v.18 Effect of lactic acid on Listeria monocytogenes and Edwardsiella tarda attached to catfish skin Kim, J.;Marshall, D.L.
  6. FEMS Immun. Med. Mic. v.35 Quantitative risk assessment of Listeria monocytogenes in ready-to-eat foods: the FAO/WHO approach Rocourt, J.;BenEmbarek, P.;Toyofuku, H.;Schlundt, J.
  7. Nutraceut. Food v.8 Inhibition of Listeria monocytogenes in vacuum or modified atmospherepacked ground beef by lactococcal bacteriocins Park, H.J.;Lee, N.K.;Kim, K.T.;Ha, J.U.;Lee, D.S.;Paik, H.D.
  8. Brit. Med. J. v.303 Human listeriosis and pate: a possible association McLauchlin, J.;Hall, S.M.;Velani, S.K.;Gilbert, R.J.
  9. J. Am. Med. Assoc. v.281 Update: Multistate outbreak of listeriosis United States, 1998-1999 Anon, M.L.T.
  10. Listeria, Listeriosis, and Food Safety Ryser, E.T.;Marth, E.H.
  11. Int. J. Food Microbiol. v.76 Enhanced antimicrobial effects of combination of lactate and diacetate on Listeria monocytogenes and Salmonella spp. in beef bologna Mbandi, E.;Shelef, L.A.
  12. Biotechnol. v.12 Monitoring of Listeria monocytogenes in an ice cream manufacturing plant in Korean Food Sci. Bahk, G.J.;Kim, Y.S.;Shin, E.H.;Roh, W.S.;Kim, J.W.
  13. Int. J. Food Microbiol. v.101 Growth of the Listeria monocytogenes on iceberg lettuce and solid media Koseki, S.;Isobe, S.
  14. Microbiol. Rev. v.55 Listeria monocytogenes, a foodbome pathogen Farber, J.M.;Peterkin, P.I.
  15. J. Appl. Bacteriol. v.80 Listeria monocytogenes investigations in seven Danish abattoirs Ojeniyi, B.;Wegener, H.C.;Jensen, N.E.;Bisgaard, M.
  16. J. Food Prot. v.60 Incidence and survival of Listeria monocytogenes in ready-to-eat seafood products McCarthy, S.A.
  17. Int. J. Food Microbiol. v.45 Microbiological quality of Icelandic cooked-peeled shrimp (Pandalus borealis) Valdimarsson, G.;Einarsson, H.;Gudbjomsdottir, B.;Magnusson, H.
  18. Incidence and control of Listeria in food-processing facilities;Listeria, Listeriosis and Food Safety Gravini, R.;Ryse, E.T.(ed.);Marth, E.H,(ed.)
  19. Int. J. Food Microbiol. v.53 Incidence and control of Listeria monocytogenes in foods in Denmark Norrung, B.;Andersen, J.K.;Schlundt, J.
  20. Int. J. Food Microbiol. v.65 Occurrence of Listeria species in retail poultry meat and comparison of a cultural/immunoassay for their detection Capita, R.;Alonso-Calleja, C.;Moreno, B.;Garcia-Fernandez, M.C.
  21. J. Food Microbiol. v.21 The incidence of Listeria monocytogenes in meat, poultry and seafood plants in the Nordic countries Gudbjomsdottir, B.;Suihko, M.L.;Gustavsson, P.;Thorkelsson, G.;Salo, S.;Sjoberg, A.M.;Niclasen, O.;Bredholt, S.
  22. Food Processing v.10 Salt of the earth De Vegt, B.
  23. Food Microbiol. v.20 Enhanced inhibition of Listeria monocytogenes in Frankfurter sausage by the addition of potassium lactate and sodium diacetate mixtures Stekelenburg, F.K.
  24. J. Food Sci. v.59 Sodium lactates affect pathogens in cooked beef Miller, R.K.;Acuff, G.R.
  25. Int. J. Food Microbiol. v.24 Growth suppression of Listeria monocytogenes in a meat product Qvist, S.;Sehersted, K.;Zeuthen, P.
  26. Int. J. Food Microbiol. v.63 The effect of calcium and sodium lactates on growth from spores of Bacillus cereus and Clostridium perfringens in a 'sous-vide' beef goulash under temperature abuse Aran, N.
  27. Meat Sci. v.65 The effects of sodium lactate and starter cultures on pH, lactic acid bacteria, Listeria monocytogenes and Salmonella spp. levels in pure chicken dry fermented sausage Deumier, F.;Collignana, A.
  28. Meat Sci. v.32 Potassium chloride, potassium lactate and glycine as sodium chloride substitutes in fermented sausages and in dry-cured pork loin Gou, P.;Guemero, L.;Gelabert, U.;Amau, J.
  29. Food Microbiol. v.7 Antimicrobial activity of sodium lactate Wit, J.C.;de Rombouts, F.M.
  30. J. Food Sci. v.58 Microbiological safety of cooked beef roasts treated with lactate, monolaurin or gluconate Stillmunkes, A.A.;Prabhu, G.A.;Sebranek, J.G.;Molins, R.A.
  31. J. Food Sci. v.60 Sodium lactate affects shelf life and consumer acceptance of fresh catfish (Ictalurus nebulosus, marmoratus) fillets under simulated retail conditions Williams, S.K.;Rodrick, G.E.;West, R.L.
  32. Int. J. Food Microbiol. v.23 Growth of Listeria monocytogenes on vacuum-packed cooked meats: effects of pH, $a_w$ nitrite and ascorbate Duffy, L.L.;Vanderlinde, P.B.;Grau, F.U.
  33. J. Food Prot. v.57 The combined inhibitory effect of lysozyme and low pH on growth of Listeria monocytogenes Johansen, C.;Gram, L.;Meyer, A.S.
  34. J. Food Sci. v.59 no.1 Non-thermal inactivation models for Listeria monocytogenes Buchanan, R.L.;Golden, M.H.;Whiting, R.C.;Phillips, J.G.;Smith, J.L.
  35. Food Microbiol v.12 Model for the non-thermal inactivation of Listeria monocytogenes in a reduced oxygen environment Buchanan, R.L.;Golden, M.H.
  36. J. Appl. Microbiol. v.82 Expanded models for the non-thermal inactivation of Listeria monocytogenes Buchanan, R.L.;Golden, M.H.;Phillips, J.G.
  37. Int. J. Food Microbiol. v.44 The effect of the growth environment on the lag phase of Listeria monocytogenes Robinson, T.P.;Ocio, M.J.;Kaloti, A.;Mackey, B.M.
  38. J. Food Prot. v.51 Temperature, pH and strain of pathogen as factors affecting inactivation of Listeria monocytogenes by chlorine El-Kest, E.S.;Marth, E.H.
  39. J. Appl. Microbiol. v.86 Weak-acid preservatives: modeling microbial inhibition and response Lambert, R.J.;Stratford, M.
  40. Can. J. Microbiol. v.18 Psychrotrophic properties of Listeria monocytogenes Wilkins, P.O.;Bourgeois, R.;Murray, R.G.E.
  41. Food Microbiol. v.16 The effect of a competitive microflora, pH and temperature on the growth kinetics of Escherichia coli O157:H7 Duff, G.;Whiting, R.C.;Sheridan, J.J.
  42. J. Food Safety v.13 Antilisterial activity of sodium, potassium or calcium lactate in pork liver sausage Weaver, R.A.;Shelef, L.A.
  43. J. Food Safety v.14 Inhibition of Listeria monocytogenes and other bacteria by sodium diacetate Shelef, L.A.;Addala, L.
  44. Food Microbiol. v.12 Behavior of foodbome pathogens in cooked liver sausage containing lactates Shelef, L.A.;Potluri, V.
  45. Int. J. Food Microbiol. v.38 Addition of 2.5% lactate and 0.25% acetate controls growth of Listeria monocytogenes in vacuum-packed, sensory acceptable servelat sausage and in cooked ham stored at 4$48^{circ)C.$ Blom, H.;Nerbrink, E.;Dainty, R.;Hagtvedt, T.;Borch, E.;Nissen, H.;Nesbakken, T.
  46. Food Microbiol. v.22 Effect of antimicrobials as ingredients of pork bologna for Listeria monocytogenes control during storage at 4 or $10^{circ}C.$ Barmpalia, M.I.;Koutsoumanis, K.P.;Geomaras, I.;Belk, K.E.;Scanga, J.A.;Kendall, P.A.;Smith, G.C.;Sofos, I.N.
  47. Chem. Ind. v.75 The preservative action of acid substances in food Ingram, M.;Ottoway, F.J.H.;Coppock, J.B.M.
  48. Appl. Microbiol. v.30 Mechanisms of benzoic acid uptake by Saccharomyces cerevesia Macris, B.J.
  49. J. Appl. Bacteriol. v.54 The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels Eklund, T.
  50. Fleischwirtsch v.64 Improving the storage life of carcasses by treating their surfaces with an acid spray Osthold, W.;Shin, H.K.;Dresel, J.;Leistner, L.
  51. Recip. Meat. Conf. Proc. v.41 Microbial control methods in fresh and processed meats Bacus, J.
  52. Appl. Environ. Microbiol. v.55L Sodium lactate delays toxin production by Clostridium botulinum in cook-in-bag turkey products Maas, M.R.;Glass, K.A.;Doyle, M.P.
  53. J. Food Sci. v.56 Effect of sodium lactate on microbial and chemical composition of cooked beef during storage Papadopoulos, L.S.;Miller, R.K.;Acuff, G.R.;Vanderzant, C.;Cross, H.R.
  54. J. Food. Prot. v.57 Antimicrobial effects of lactates: a review Shelef, L.A.