참고문헌
- Eur. J. Clin. Nutr. v.51 Influences on food choice perceived to be important by nationally-representative samples of adults in the European Union Lennernas, M.;Fjellstrom, C.;Becker, W.;Giachetti, I.;Schmitt, A.;Remaut de Winter, A.;Kearney, M.
- Food Chem. Toxicol. v.24 Occurrence of lipid peroxidation products in foods Addis, P.B. https://doi.org/10.1016/0278-6915(86)90283-8
- Poultry Sci. v.72 The effect of metal chelators, hydroxyl radical scavengers, and enzyme systems on the lipid peroxidation of raw turkey meat Ahn, D.U.;Wolfe, F.H.;Sim, J.S. https://doi.org/10.3382/ps.0721972
- Lipid peroxidation in muscle foods via redox iron;Lipid Peroxidation in Foods, ACS Symposium Series 500 Decker, E.A.;Hultin, H.O.;Angelo, A.J.(ed.)
- Food Chem. v.35 Lipid peroxidation in muscle foods:A review Ladikos, D.;Lougovois, V. https://doi.org/10.1016/0308-8146(90)90019-Z
- Meat Sci. v.36 Oxidative processes in meat and meat products: Quality implications Kanner, J. https://doi.org/10.1016/0309-1740(94)90040-X
- Crit. Rev. Food Sci. Nutr. v.36 Lipid peroxidation in Foods Angelo, A.J. https://doi.org/10.1080/10408399609527723
- Biochem. v.33 Free radical-mediated lipid peroxidation in cells: Oxidizability is a function of cell lipid bis-allylic hydrogen content Wagner, B.A.;Buettner, G.R.;Burns, C.P. https://doi.org/10.1021/bi00181a003
- FEBS v.264 Oxyradical reactions: from bond-dissociation energies to reduction potentials Koppenol, W.H. https://doi.org/10.1016/0014-5793(90)80239-F
- Arch. Biochern.Biophys. v.300 The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate Buettner, G.R. https://doi.org/10.1006/abbi.1993.1074
- Biochem. J. v.260 Mass spectrometric detection of cross-linked fatty acids formed during radical-induced lesion of lipid membranes Frank, H.;Thiel, D.;MacLeod, J.
- Biochirn. Biophys. Acta. v.732 Lipid peroxidation and gel to liquid-crystalline transition temperatures of synthetic polyunsaturated mixed-acid phosphatidylcholines Coolbear, K.P.;Keough, K.M. https://doi.org/10.1016/0005-2736(83)90229-8
- Free Rad. BioI. Med. v.7 Oxygen radical chemistry of polyunsaturated fatty acids Gardner, H.W. https://doi.org/10.1016/0891-5849(89)90102-0
- Lipids v.30 Mechanisms of free radical oxidation of unsaturated lipids Porter, N.A.;Caldwell, S.E.;Mills, K.A. https://doi.org/10.1007/BF02536034
- J. Lipid Res. v.39 Lipid hydroperoxide generation, turnover, and effector action in biological systems Girotti, A.W.
- Methods Enzymol. v.186 Role of free radicals and catalytic metal ions in human disease: An overview Halliwell, B.;Gutteridge, J.M.C. https://doi.org/10.1016/0076-6879(90)86093-B
- Chem. Phys. Lipids. v.44 Secondary products of lipid peroxidation Frankel, E.N. https://doi.org/10.1016/0009-3084(87)90045-4
- JAOCS v.70 Formation of headspace volatiles by thermal decom-position of oxidized fish oils vs. oxidized vegetable oils Frankel, E.N. https://doi.org/10.1007/BF02542598
- Free Rad. BioI. Med. v.11 Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes Esterbauer, H.;Schaur, R.J.;Zollner, H. https://doi.org/10.1016/0891-5849(91)90192-6
- J. Food Sci. v.66 Detection of lipid-derived aldehydes and aldehyde: protein adducts in vitro and in beef Lynch, M.P.;Faustrnan, C.;Silbart, L.K.;Rood, D.;Furr, H.C.
- J. Agric. Food Chem. v.48 Effect of aldehyde lipid peroxidation products on myoglobin Lynch, M.P.;Faustman, C. https://doi.org/10.1021/jf990732e
- J. Food Lipids v.1 Hexanal as an indicator of meat flavor deterioration Shahidi, F.;Pegg, R. https://doi.org/10.1111/j.1745-4522.1994.tb00245.x
- J. BioI. Chem. v.274 4-Hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress Okada, K.;Wangpoengtrakul, C.;Osawa, T.;Toyokuni, S.;Tanaka, K.;Uchida, K. https://doi.org/10.1074/jbc.274.34.23787
- Biochem. J. v.191 Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria Turrens, J.F.;Boveris, A.
- Crit. Rev. Food Sci. Nutr. v.35 The role of free radicals and antioxidants: How do we know that they are working? Thomas, M.J. https://doi.org/10.1080/10408399509527683
- Biochemistry v.35 Production of superoxide from hemoglobin-bound oxygen under hypoxic conditions Balagopalakrishna, C.;Manoharan, P.T.;Abugo, O.O.;Rifkind, J.M. https://doi.org/10.1021/bi952875+
- J. Agric. Food Chem. v.50 Myoglobin-induced lipid peroxidation. A review Baron, C.P.;Andersen, H.J. https://doi.org/10.1021/jf011394w
- Eur. J. Biochem. v.245 NADH oxidase activity of human xanthine oxidoreductase: Generation of superoxide anion Sanders-Stephen, A.;Eisenthal, R.;Harrison, R. https://doi.org/10.1111/j.1432-1033.1997.00541.x
- J. BioI. Chem. v.263 Superoxide-dependent oxidation of extracellular reducing agents by isolated neutrophils Thomas, E.L.;Learn, D.B.;Jefferson, M.M.;Weatherred, W.
- Biochirn. Biophys. Acta. v.594 Membrane surface charges and potentials in relation to photosynthesis Barber, J. https://doi.org/10.1016/0304-4173(80)90003-8
- Free. Rad. BioI. Med. v.20 Can superoxide organic chemistry be observed within the liposomal bilayer? Frimer, A.A.;Strul, G.;Buch, J.;Gottlieb, H.E. https://doi.org/10.1016/0891-5849(95)02148-5
- J. Am. Chem. Soc. v.103 Comparison of the capacities of the perhydroxyl and the superoxide radicals to initiate chain oxidation of linoleic acid Gebicki, J.M.;Bielski, B.H.J. https://doi.org/10.1021/ja00413a066
-
J. BioI. Chem.
v.258
A study of the reactivity of
$HO_2/O_2$ with unsaturated fatty acids Bielski, B.H.J.;Ameli, R.L.;Sutherland, M.W. - J. BioI. Chem. v.266 Perhydroxyl radical (HOO) initiated lipid peroxidation. The role of fatty acid hydroperoxides Aikens, J.;Dix, T.A.
- Arch. Biochern. Biophys v.305 Hydrodioxyl (perhydroxyl), peroxyl, and hydroxyl radical-initiated lipid peroxidation of large unilamellar vesicles (liposomes): comparative and mechanistic studies Aikens, J.;Dix, T.A. https://doi.org/10.1006/abbi.1993.1455
-
Free Rad. BioI. Med.
v.16
The role of
$O_2$ in the production of OH': in vitro and in vivo Liochev, S.I.;Fridovich, I. https://doi.org/10.1016/0891-5849(94)90239-9 - Ann. Rev. Biochem. v.64 Superoxide radical and superoxide dismutase Fridovich, I. https://doi.org/10.1146/annurev.bi.64.070195.000525
- Free radicals in biology and medicine Halliwell, B.;Gutteridge, J.M.C.
- Poultry Sci. v.77 Effect of superoxide and superoxidegenerating systems on the prooxidant effect of iron in oil emulsion and raw turkey homogenates Ahn, D.U.;Kim, S.M.
- Free Rad. BioI. Med. v.16 Hydrogen peroxide production by red blood cells Giulivi, C.;Hochstein, P.;Davies, K.J.A. https://doi.org/10.1016/0891-5849(94)90249-6
-
Meat Sci.
v.46
Lipid peroxidation induced by oxymyoglobin and metrnyoglobin with involvement of
$H_2O_2$ and superoxide anion Chan, W.K.M.;Faustman, C.;Yin, M.;Decker, E.A. https://doi.org/10.1016/S0309-1740(97)00014-4 - J. Agric. Food Chem. v.33 Hydrogen peroxide generation in ground muscle tissues Harel, S.;Kanner, J. https://doi.org/10.1021/jf00066a041
- Trends Neurosci. v.79 Oxygen radicals and the nervous systern Halliwell, B.;Gutteridge, J.M.C.
-
Free Rad. BioI. Med.
v.16
Spectral characterization of lipid peroxidation in rabbit lens membranes induced by hydrogen peroxide in the presence of
$Fe^{2+}/Fe^{3+}$ cations: A site specific catalyzed oxidation Lamba, O.P.;Borchman, D.;Garner, W.H. https://doi.org/10.1016/0891-5849(94)90059-0 - Free. Rad. BioI. Med. v.4 Why is the hydroxyl radical the only radical that commonly adds to DNA? Hypothesis: It has a rare combination of high electrophilicity, high thermochemical reactivity, and a mode of production that can occur near DNA Pryor, W.A. https://doi.org/10.1016/0891-5849(88)90043-3
- FEBS Lett. v.157 The production of hydroxyl radicals by adriamycin in red blood cells Bannister, J.V.;Thomalley, P.J. https://doi.org/10.1016/0014-5793(83)81139-9
- J. Biochern. Biophys. Methods v.42 Determination of rate constants for the reactions of hydroxyl radicals with some purines and pyrimidines using sunlight Joseph, J.M.;Aravindakumar, C.T. https://doi.org/10.1016/S0165-022X(99)00054-8
- Arch. Biochem. Biophys. v.262 Hydroxyl free radical mediated formation of 8-hydroxyguanine in isolated DNA Floyd, R.A.;West, M.S.;Eneff, K.I.;Hogsett, W.E.;Tingey, D.T. https://doi.org/10.1016/0003-9861(88)90188-9
- Fundamental radiation chemistry of food components;Recent Advances in the Chemistry of Meat Swallow, A.J.;Bailey, A.J.(ed.)
- Arch. Biochem. Biophys v.323 Kinetics and Mechanisms of hypochlorous acid reactions Folkes, L.K.;Candeias, L.P.;Wardman, P. https://doi.org/10.1006/abbi.1995.0017
- Int. J. Radiat. BioI. Relat. Stud. Phys. Chern. Med. v.48 Scavenging of OH radicals produced in the sonolysis of water Henglein, A.;Kormann, C. https://doi.org/10.1080/09553008514551241
- Int. J. Radiat. BioI. Relat. Stud. Phys. Chern. Med. v.43 Action of some hydroxyl radical scavengers on radiation-induced haemolysis Miller, G.G.;Raleigh, J.A. https://doi.org/10.1080/09553008314550471
- J. Inorg. Biochem. v.29 The role of iron in ascorbate-dependent deoxyribose degradation. Evidence consistent with a site-specific hydroxyl radical generation caused by iron ions bound to the deoxyribose molecule Auroma, O.I.;Grootveld, M.;Halliwell, B. https://doi.org/10.1016/0162-0134(87)80035-1
- Free Rad. Res. Comms. v.8 Binding of iron to human red blood cell membranes Baysal, E.;Sullivan, S.G.;Stem, A. https://doi.org/10.3109/10715768909087972
- Biochem. J. v.224 Reactivity of hydroxyl and hydroxyl-like radicals discriminated by release of thiobarbituric acid-reactive material from deoxy sugars, nucleosides, and benzoate Gutteridge, J.M.
- Free Rad. Res. Comms. v.12 Studies of hypervalent iron Bielski, B.H.J.
- J. Free Rad. BioI. Med. v.1 The reaction of ferrous EDTA with hydrogen peroxide: Evidence against hydroxyl radical formation Koppenol, W.H. https://doi.org/10.1016/0748-5514(85)90132-1
- Free Rad. BioI. Med. v.13 Fenton reactions may not initiate lipid peroxidation in an emulsified linoleic acid model system Yin, D.;Lingnert, H.;Ekstrand, B.;Brunk, U.T. https://doi.org/10.1016/0891-5849(92)90149-B
- Nature v.181 Free radical produced in the reaction of metmyoglobin with hydrogen peroxide Gibson, J.F.;Ingram, D.J.E.;Nicholls, P. https://doi.org/10.1038/1811398a0
- Free Rad. Res. Comms. v.5 The generation of ferryl of hydroxyl radicals during interaction of haemproteins with hydrogen peroxide Harel, S.;Kanner, J. https://doi.org/10.3109/10715768809068555
- Free Rad. Res. Comms. v.7 Direct detection of peroxyl radicals formed in the reactions of metmyoglobin and methaemoglobin with t-butyl hydroperoxide Davies, M.J. https://doi.org/10.3109/10715768909088158
- J. BioI. Chem. v.275 Formation of compound I in the reaction of native myoglobins with hydrogen peroxide Egawa, T.;Shimada, H.;Ishimura, Y. https://doi.org/10.1074/jbc.M004026200
- J. Agric. Food Chem. v.38 ESR spin-trapping studies of free radicals generated by hydrogen peroxide activation of metmyoglobin Xu, Y.;Asghar, A.;Gran, J.I.;Pearson, A.M.;Haug, A.;Grulke, E.A. https://doi.org/10.1021/jf00097a014
- Free. Rad. BioI. Med. v.32 Deleterious iron-mediated oxidation of biomolecules Welch, K.D.;Zane Davis, T.;Van Eden, M.E.;Aust, S.D. https://doi.org/10.1016/S0891-5849(02)00760-8
- Inorganic Biochemistry of Iron Metabolisrn Crichton, R.
- J. Food Sci. v.47 Measurement and content of nonheme and total iron in muscle Schricker, B.R.;Miller, D.D.;Stouffer, J.R. https://doi.org/10.1111/j.1365-2621.1982.tb12704.x
- J. Sci. Food. Agric. v.33 Iron and zinc compounds in the muscle meats of beef, lamb, pork and chicken Hazell, T. https://doi.org/10.1002/jsfa.2740331017
- J. Food Sci. v.48 Effects of cooking and chemical treatment on heme and nonheme iron in meat Schricker, B.R.;Miller, D.D. https://doi.org/10.1111/j.1365-2621.1983.tb09225.x
- J. Food Sci. v.58 Iron distribution in heated beef and chicken muscles Han, D.;McMillin, K.W.;Godber, J.S.;Bidner, T.D.;Younathan, M.T.;Marshall, D.L.;Hart, L.T. https://doi.org/10.1111/j.1365-2621.1993.tb09337.x
- Eur. J. Biochem. v.164 Iron transport and storage Crichton, R.R.;Charloteaux-Wauters, M. https://doi.org/10.1111/j.1432-1033.1987.tb11155.x
- Free Rad. BioI. Med. v.12 Ferritin as a source of iron for oxidative damage Reif, D.W. https://doi.org/10.1016/0891-5849(92)90091-T
- J. Lipid Res. v.40 Lipolysisinduced iron release from diferric transferrin: possible role of lipoprotein lipase in LDL oxidation Balagopalakrishna, C.;Pak, L.;Pillarisetti, S.;Goldberg, J.J.
- Free Rad. BioI. Med. v.3 Superoxide ion as a primary reductant in ascorbate-mediated ferritin iron release Boyer, R.F.;McCleary, C.J. https://doi.org/10.1016/0891-5849(87)90017-7
- J. Food Sci. v.56 Factors affecting catalysis of lipid peroxidation by a ferritin-containing extract of beef muscle Seman, D.L.;Decker, E.A.;Crum, A.D. https://doi.org/10.1111/j.1365-2621.1991.tb05279.x
- J. Agric. Food Chem. v.38 Role of ferritin as a lipid peroxidation catalyst in muscle food Decker, E.A.;Welch, B. https://doi.org/10.1021/jf00093a019
- J. Agric. Food Chem. v.39 Ferritin in turkey muscle tissue: A source of catalytic iron ions for lipid peroxidation Kanner, J.;Doll, L. https://doi.org/10.1021/jf00002a004
- Biochem. J. v.234 Formation of hydroxyl radicals in the presence of ferritin and haemosiderin. Is haemosiderin formation a biological protective mechanism? O'Connell, M.;Halliwell, B.;Moorhouse, C.P.;Aruoma, O.I.;Baum, H.;Peter, T.J.
- J. BioI. Chem. v.259 Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site Graf, E.;Mahoney, J.R.;Bryant, R.G.;Eaton, J.W.
- Int. J. Biochem. v.18 Non-ferritin, non-heme iron pools in rat tissues Mulligan, M.;Althaus, B.;Linder, M.C. https://doi.org/10.1016/0020-711X(86)90055-8
- J. Clin. Invest v.90 Low molecular weight iron and the oxygen paradox in isolated rat hearts Voogd, A.;Sluiter, W.;Van Eijk, H.G.;Koster, J.F. https://doi.org/10.1172/JCI116086
- Free Rad. BioI. Med. v.13 Intracellular free iron in liver tissue and liver homogenate: Studies with electron paramagnetic resonance on the formation of paramagnetic complexes with desferal and nitric oxide Kozlov, A.Y.;Yegorov, D.Y.;Vladimirov, Y.A.;Azizova, O.A. https://doi.org/10.1016/0891-5849(92)90159-E
- Biochim. Biophys. Acta. v.843 Mitochondrial iron not bound in heme and ironsulfur centers and its availability for heme synthesis in vivo Tangeras, A. https://doi.org/10.1016/0304-4165(85)90140-0
- J. Agric. Food Chem. v.36 Catalytic 'free' iron ions in muscle foods Kanner, J.;Hazan, B.;Doll, L. https://doi.org/10.1021/jf00081a002
- Radiat. Res. v.145 Catalytic metals, ascorbate and free radicals: Combinations to avoid Buettner, G.R.;Jurkiewicz, B.A. https://doi.org/10.2307/3579271
- J. Agric. Food Chem. v.39 Lipid peroxidation of muscle food as affected by NaCI Kanner, J.;Harel, S.;Jaffe, R. https://doi.org/10.1021/jf00006a002
- Meat Sci. v.25 Catalysts of lipid peroxidation in meat products Johns, A.M.;Birkinshaw, L.H.;Ledward, D.A. https://doi.org/10.1016/0309-1740(89)90073-9
- Meat Sci. v.34 Catalysis of lipid peroxidation in muscle model systems by haem and inorganic iron Monahan, F.J.;Crackel, R.L.;Gray, J.I.;Buckley, D.J.;Morrisey, P.A. https://doi.org/10.1016/0309-1740(93)90020-I
- J. Food Sci. v.60 Lipid stability of beef model systems with heating and iron fractions Han, D.;McMillin, K.W.;Godber, J.S.;Bidner, T.D.;Younathan, M.T.;Hart, L.T. https://doi.org/10.1111/j.1365-2621.1995.tb09836.x
- Meat Sci. v.62 Role of deoxyhemoglobin in lipid peroxidation of washed cod muscle mediated by trout, poultry and beef hemoglobins Richards, M.P.;Modra, A.M.;Li, R. https://doi.org/10.1016/S0309-1740(01)00242-X
- J. Food Biochem. v.11 Lipid peroxidation in retail beef, pork and chicken muscles as affected by concentrations of heme pigments and nonheme iron and microsomal enzymic lipid peroxidation activity Rhee, K.S.;Ziprin, Y.A. https://doi.org/10.1111/j.1745-4514.1987.tb00109.x
- J. Agric. Food Chem. v.36 Muscle lipid peroxidation dependent on oxygen and free metal ions Kanner, J.;Shegalovich, I.;Harel, S.;Hazan, B. https://doi.org/10.1021/jf00081a001
- J. Agric. Food Chem. v.36 Antioxidant activity of ceruloplasmin in muscle membrane and in situ lipid peroxidation Kanner, J.;Sofer, F.;Harel, S.;Doll, L. https://doi.org/10.1021/jf00081a003
- Poultry Sci. v.72 The effect of free and bound iron on lipid peroxidation in turkey meat Ahn, D.U.;Wolfe, F.R.;Sim, J.S. https://doi.org/10.3382/ps.0720209
- Poultry Sci. v.77 Prooxidant effects of ferrous iron, hemoglobin, and ferritin in oil emulsion and cooked meat homogenates are different from those in raw-meat homogenates Ahn, D.U.;Kim, S.M.
- Food Chem. v.25 Effect of haemoglobin and ferritin on lipid peroxidation in raw and cooked muscle systems Apte, S.;Morrissey, P.A. https://doi.org/10.1016/0308-8146(87)90061-6
- Arch. Biochem. Biophys. v.237 Initiation of membranal lipid peroxidation by activated metmyoglobin and methemoglobin Kanner, J.;Harel, S. https://doi.org/10.1016/0003-9861(85)90282-6
- J. BioI. Chem. v.269 The lipoxygenase activity of myoglobin. Oxidation of linoleic acid by the ferryl oxygen rather than protein radical Rao, S.I.;Wilks, A.;Hamberg, M.;Ortiz de Montellano, P.R.
- Arch. Biochem. Biophys. v.344 Myoglobin-catalyzed bis-Allylic hydroxylation and epoxidation of linoleic acid Hamberg, M. https://doi.org/10.1006/abbi.1997.0194
- Mechanism of nonenzymic lipid peroxidation in muscle foods;Lipid Peroxidation in Foods, ACS Symposium Series 500 Kanner, J.;Angelo, A.J.(ed.)
-
J. Agric. Food. Chem.
v.35
Catalysis of lipid peroxidation in raw and cooked beef by
$metmyoglobin-H_2O_2$ , nonheme iron, and enzyme systems Rhee, K.S.;Ziprin, Y.A.;Ordonez, G. https://doi.org/10.1021/jf00078a037 - Free Rad. BioI. Med. v.28 Peroxidation of linoleate at physiological pH: hemichrome formation by substrate binding protects against metmyoglobin activation by hydrogen peroxide Baron, C.P.;Skibsted, L.H.;Andersen, H.J. https://doi.org/10.1016/S0891-5849(99)00240-3
- J. Agric. Food Chem. v.50 Concentration effects in myoglobin-catalyzed peroxidation of linoleate Baron, C.P.;Skibsted, L.H.;Andersen, H.J. https://doi.org/10.1021/jf011169e
- Free Rad. Res. Comms. v.5 Iron release from metmyoglobin, methaemoglobin and cytochrome c by a system generating hydrogen peroxide Harel, S.;Salan, M.A.;Kanner, J. https://doi.org/10.3109/10715768809068554
- Biochem. J. v.245 Studies on the metal-ion and lipoxygenase-catalysed breakdown of hydroperoxides using electronspin-resonance spectroscopy Davies, M.J.;Slater, T.F.
- Biochim. Biophys. Acta. v.794 Kinetic and mechanism of vesicle lipoperoxide decomposition by Fe(II) Garnier-Suillerot, A.;Tosi, L.;Paniago, E. https://doi.org/10.1016/0005-2760(84)90160-7
- Arch. Biochem. Biophys. v.284 Site-specific mechanisms of initiation by chelated iron and inhibition by alpha-tocopherol of lipid peroxide-dependent lipid peroxidation in charged micelles Fujii, T.;Hiramoto, Y.;Terao, J.;Fukuzawa, K. https://doi.org/10.1016/0003-9861(91)90273-L
- Free Rad. Res. v.27 Iron (III) stimulation of lipid hydroperoxide-dependent lipid peroxidation Tadolini, B.;Cabrini, L.;Menna, C.;Pinna, G.G.;Hakim, G. https://doi.org/10.3109/10715769709097860
- Biochem. J. v.352 The mechanism of Fe(2+)initiated lipid peroxidation in liposomes: the dual function of ferrous ions, the roles of the pre-existing lipid peroxides and the lipid peroxyl radical Tang, L.;Zhang, Y.;Qian, Z.;Shen, X. https://doi.org/10.1042/0264-6021:3520027
- Free Rad. Biol. Med. v.8 Microsomal lipid peroxidation: The role of NADPH - Cytochrome P450 reductase and cytochrome P450 Sevanian, A.;Nordenbrand, K.;Kim, E.;Ernster, L.;Hochstein, P. https://doi.org/10.1016/0891-5849(90)90087-Y
- Xenobiotica v.20 Cytochrome P450-dependent formation of reactive oxygen radicals: isozymespecific inhibition of P-450-mediated reduction of oxygen and carbon tetrachloride Persson, J.O.;Terelius, Y.;Ingelman-Sundberg, M. https://doi.org/10.3109/00498259009046904
- Proc. Natl. Acad. Sci. U.S.A. v.91 Cytochrome P-450 mediates tissuedamaging hydroxyl radical formation during reoxygenation of the kidney Paller, M.S.;Jacob, H.S.
- Experientia v.42 Hydroxyl radicals are not involved in NADPH dependent microsomal lipid peroxidation Bast, A.;Steeghs, M.H. https://doi.org/10.1007/BF01946700
- J. Food Sci. v.49 Enzymic lipid peroxidation in microsomal fractions from beef skeletal muscle Rhee, K.S.;Dutson, T.R.;Smith, G.C. https://doi.org/10.1111/j.1365-2621.1984.tb13186.x
- J. Agric. Food Chem. v.34 Muscle membranal lipid peroxidation by an 'iron redox cycle' system: Initiation by oxy radicals and site-specific mechanism Kanner, J.;Harel, S.;Hazan, B. https://doi.org/10.1021/jf00069a034
- Food Technol. v.42 no.6 Enzymic and nonenzymic catalysis of lipid peroxidation in muscle foods Rhee, K.S.
- J. Agric. Food Chem. v.33 Lipid peroxidation in fish tissue. Enzymatic initiation via lipoxygenase German, J.B.;Kinsella, J.E. https://doi.org/10.1021/jf00064a028
- J. Sci. Food Agric. v.81 12-Lipoxygenase activity in the muscle tissue of Atlantic mackerel (Scomber scombrus) and its prevention by antioxidants Saeed, S.;Howell, K.K. https://doi.org/10.1002/jsfa.878
- Biochim. Biophys. Acta. v.1128 Mammalian lipoxygenase: molecular structures and functions Yamamoto, S. https://doi.org/10.1016/0005-2760(92)90297-9
- Free Rad. Biol. Med. v.33 Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes Kuhn, H.;Borchert, A. https://doi.org/10.1016/S0891-5849(02)00855-9
- Meat Sci. v.49 Lipid stability in meat and meat products Morrissey, P.A.;Sheehy, P.J.A.;Galvin, K.;Kerry, J.P.;Buckley, D.J. https://doi.org/10.1016/S0309-1740(98)90039-0
- J. Agric. Food Chem. v.24 no.1 Effect of total lipids and phospholipids on warmed-over flavor in red and white muscle from several species as measured by thiobarbituric acid analysis Wilson, B.R.;Pearson, A.M.;Shorland, F.E. https://doi.org/10.1021/jf60203a040
- J. Food Sci. v.49 Relative role of phospholipids, triacylglycerols, and cholesterol esters on malonaldehyde formation in fat extracted from chicken meat Pikul, J.;Leszczynski, D.E.;Kummerow, F.A. https://doi.org/10.1111/j.1365-2621.1984.tb13192.x
- Food Chem. v.5 no.4 Role of triglycerides and phospholipids on development of rancidity in model meat systems during frozen storage Igene, J.O.;Pearson, A.M.;Dugan, L.R. Jr.;Price, J.F. https://doi.org/10.1016/0308-8146(80)90048-5
- Food Chem. v.51 no.2 The influence of microsomal and cytosolic components on the oxidation of myoglobin and lipid in vitro Yin, M.C.;Faustrnan, C. https://doi.org/10.1016/0308-8146(94)90250-X
- Meat Sci. v.59 Relationship between lipid peroxidation and fat content in Japanese Black beef Longissimus muscle during storage Sasaki, K.;Mitsumoto, M.;Kawabata, K. https://doi.org/10.1016/S0309-1740(01)00093-6
- J. Food Sci. v.60 Dietary a-linoleic acid and mixed tocopherols, and packaging influences on lipid stability in broiler chicken breast and leg muscle Ahn, D.U.;Wolfe, F.R.;Sim, J.S. https://doi.org/10.1111/j.1365-2621.1995.tb06282.x
- Meat Sci. v.52 Membrane lipid peroxidation and proteolytic activity in thigh muscles from broilers fed different diets Sarraga, C.;Garcia Regueiro, J.A. https://doi.org/10.1016/S0309-1740(98)00170-3
- Atherosclerosis v.155 no.1 Enhanced level of n-3 fatty acid in membrane phospholipids induces lipid peroxidation in rats fed dietary docosahexaenoic acid oil Song, J.H.;Miyazawa, T. https://doi.org/10.1016/S0021-9150(00)00523-2
- J. Food Sci. v.61 Lipid peroxidation potential of beef, chicken, and pork Rhee, K.S.;Anderson, L.M.;Sams, A.R. https://doi.org/10.1111/j.1365-2621.1996.tb14714.x
- J. Food Qual. v.12 Lipid peroxidation in turkey meat as influenced by salt metal cations and antioxidants Salih, A.M.;Price, J.F.;Simth, D.M.;Dawson, L.E. https://doi.org/10.1111/j.1745-4557.1989.tb00310.x
- Meat Sci. v.61 Volatile profiles, lipid peroxidation and sensory characteristics of irradiated meat from different animal species Kim, Y.R.;Nam, K.C.;Ahn, D.U. https://doi.org/10.1016/S0309-1740(01)00191-7
-
Meat Sci.
v.55
The effect of oxygen level and exogenous
${\alpha}-tocopherol$ on the oxidative stability of minced beef in modified atmosphere packs O'Grady, M.N.;Monahan, F.J.;Burke, R.M.;Allen, P. https://doi.org/10.1016/S0309-1740(99)00123-0 - Meat Sci. v.61 Use of oxygen sensors to non-destructively measure the oxygen content in modified atmosphere and vacuum packed beef: impact of oxygen content on lipid peroxidation Smiddy, M.;Fitzgerald, M.;Kerry, J.P.;Papkovsky, D.B.;OSullivan, C.K.;Guilbault, G.G. https://doi.org/10.1016/S0309-1740(01)00194-2
- J. Food Sci. v.57 Packaging cooked turkey meat patties while hot reduces lipid peroxidation Ahn, D.U.;Wolfe, F.R.;Sim, J.S.;Kim, D.H. https://doi.org/10.1111/j.1365-2621.1992.tb11267.x
- J. Food Sci. v.58 Oxygen availability affects prooxidant catalyzed lipid peroxidation of cooked turkey patties Ahn, D.U.;Ajuyah, A.;Wolfe, F.R.;Sim, J.S. https://doi.org/10.1111/j.1365-2621.1993.tb04255.x
- J. Food Sci. v.58 Prevention of lipid peroxidation in pre-cooked turkey meat patties with hot packaging and antioxidant combinations Ahn, D.U.;Wolfe, F.R.;Sim, J.S. https://doi.org/10.1111/j.1365-2621.1993.tb04256.x
- J. Food Sci. v.64 Kinetic studies of oxygen dependence during initial lipid peroxidation in rapeseed oil Andersson, K.;Lingnert, H. https://doi.org/10.1111/j.1365-2621.1999.tb15879.x
- Food Technol v.42 no.7 Perspectives on warmed-over flavor Asghar, A.;Gray, J.I.;Buckley, D.J.;Pearson, A.M.;Booren, A.M.
- Food Chem. v.18 Mechanisms by which nitrite inhibits the development of warmed-over flavor in cure meat Igene, J.O.;Yamauchi, K.;Pearson, A.M.;Gray, J.I.;Aust, S.D. https://doi.org/10.1016/0308-8146(85)90099-8
- J. Food Lipids v.1 Development of lipid peroxidation and inactivation of antioxidant enzymes in cooked pork and beef Mei, L.;Crum, A.D.;Decker, E.A. https://doi.org/10.1111/j.1745-4522.1994.tb00252.x
- J. Food Sci. v.61 Lipid peroxidation in cooked turkey as affected by added antioxidant enzymes Lee, S.K.;Mei, L.;Decker, E.A. https://doi.org/10.1111/j.1365-2621.1996.tb12190.x
- J. Food Sci. v.49 Some factors influencing the nonheme iron content of meat and its implications in oxidation Chen, C.C.;Pearson, A.M.;Gray, J.I.;Fooladi, M.H.;Ku, P.K. https://doi.org/10.1111/j.1365-2621.1984.tb12473.x
- J. Food Sci. v.59 Lipid peroxidation and chemical changes in catfish (lctalurus punctatus) muscle micro somes during frozen storage Eun, J.B.;Boyle, J.A.;Hearnsberger, J.O. https://doi.org/10.1111/j.1365-2621.1994.tb06941.x
- Storage stability of meat products as affected by organic acid and inorganic additives and functional ingredients;Quality Attributes of Muscle Foods Rhee, K.S.;Xiong, Y.L.(ed.);Ho, C.(ed.);Shahidi, F.(ed.)
- J. Food Prot. v.46 Effect of reduction and replacement of sodium chloride on rancidity development in raw and cooked ground pork Rhee, K.S.;Smith, G.C.;Terrell, R.N.
- J. Agric. Food Chem. v.39 Lipid peroxidation of muscle food: the role of the cytosolic fraction Kanner, J.;Salan, M.A.;Harel, S.;Shegalovich, I. https://doi.org/10.1021/jf00002a003
- Meat Sci. v.57 Pro-oxidant effects of NaCl in microbial growth-controlled and uncontrolled beef and chicken Rhee, K.S.;Ziprin, Y.A. https://doi.org/10.1016/S0309-1740(00)00083-8
- Meat Sci. v.46 Influence of sodium chloride on antioxidant enzyme activity and lipid peroxidation in frozen ground pork Lee, S.K.;Mei, L.;Decker, E.A. https://doi.org/10.1016/S0309-1740(97)00029-6
- Meat Sci. v.61 Chloride salt type/ionic strength, muscle site and refrigeration effects on antioxidant enzymes and lipid peroxidation in pork Hernandez, P.;Park, D.;Rhee, K.S. https://doi.org/10.1016/S0309-1740(01)00212-1
- Designing foods-Animal product options in the marketplace. Existing technological options and future research needs National Research Council