Mechanism of Lipid Peroxidation in Meat and Meat Products -A Review

  • Min, B. (Department of Animal Science, Iowa State University) ;
  • Ahn, D.U. (Department of Animal Science, Iowa State University)
  • Published : 2005.02.28

Abstract

Lipid peroxidation is a primary cause of quality deterioration in meat and meat products. Free radical chain reaction is the mechanism of lipid peroxidation and reactive oxygen species (ROS) such as hydroxyl radical and hydroperoxyl radical are the major initiators of the chain reaction. Lipid peroxyl radical and alkoxyl radical formed from the initial reactions are also capable of abstracting a hydrogen atom from lipid molecules to initiate the chain reaction and propagating the chain reaction. Much attention has been paid to the role of iron as a primary catalyst of lipid peroxidation. Especially, heme proteins such as myoglobin and hemoglobin and "free" iron have been regarded as major catalysts for initiation, and iron-oxygen complexes (ferryl and perferryl radical) are even considered as initiators of lipid peroxidation in meat and meat products. Yet, which iron type and how iron is involved in lipid peroxidation in meat are still debatable. This review is focused on the potential roles of ROS and iron as primary initiators and a major catalyst, respectively, on the development of lipid peroxidation in meat and meat products. Effects of various other factors such as meat species, muscle type, fat content, oxygen availability, cooking, storage temperature, the presence of salt that affect lipid peroxidation in meat and meat products are also discussed.

Keywords

References

  1. Eur. J. Clin. Nutr. v.51 Influences on food choice perceived to be important by nationally-representative samples of adults in the European Union Lennernas, M.;Fjellstrom, C.;Becker, W.;Giachetti, I.;Schmitt, A.;Remaut de Winter, A.;Kearney, M.
  2. Food Chem. Toxicol. v.24 Occurrence of lipid peroxidation products in foods Addis, P.B. https://doi.org/10.1016/0278-6915(86)90283-8
  3. Poultry Sci. v.72 The effect of metal chelators, hydroxyl radical scavengers, and enzyme systems on the lipid peroxidation of raw turkey meat Ahn, D.U.;Wolfe, F.H.;Sim, J.S. https://doi.org/10.3382/ps.0721972
  4. Lipid peroxidation in muscle foods via redox iron;Lipid Peroxidation in Foods, ACS Symposium Series 500 Decker, E.A.;Hultin, H.O.;Angelo, A.J.(ed.)
  5. Food Chem. v.35 Lipid peroxidation in muscle foods:A review Ladikos, D.;Lougovois, V. https://doi.org/10.1016/0308-8146(90)90019-Z
  6. Meat Sci. v.36 Oxidative processes in meat and meat products: Quality implications Kanner, J. https://doi.org/10.1016/0309-1740(94)90040-X
  7. Crit. Rev. Food Sci. Nutr. v.36 Lipid peroxidation in Foods Angelo, A.J. https://doi.org/10.1080/10408399609527723
  8. Biochem. v.33 Free radical-mediated lipid peroxidation in cells: Oxidizability is a function of cell lipid bis-allylic hydrogen content Wagner, B.A.;Buettner, G.R.;Burns, C.P. https://doi.org/10.1021/bi00181a003
  9. FEBS v.264 Oxyradical reactions: from bond-dissociation energies to reduction potentials Koppenol, W.H. https://doi.org/10.1016/0014-5793(90)80239-F
  10. Arch. Biochern.Biophys. v.300 The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate Buettner, G.R. https://doi.org/10.1006/abbi.1993.1074
  11. Biochem. J. v.260 Mass spectrometric detection of cross-linked fatty acids formed during radical-induced lesion of lipid membranes Frank, H.;Thiel, D.;MacLeod, J.
  12. Biochirn. Biophys. Acta. v.732 Lipid peroxidation and gel to liquid-crystalline transition temperatures of synthetic polyunsaturated mixed-acid phosphatidylcholines Coolbear, K.P.;Keough, K.M. https://doi.org/10.1016/0005-2736(83)90229-8
  13. Free Rad. BioI. Med. v.7 Oxygen radical chemistry of polyunsaturated fatty acids Gardner, H.W. https://doi.org/10.1016/0891-5849(89)90102-0
  14. Lipids v.30 Mechanisms of free radical oxidation of unsaturated lipids Porter, N.A.;Caldwell, S.E.;Mills, K.A. https://doi.org/10.1007/BF02536034
  15. J. Lipid Res. v.39 Lipid hydroperoxide generation, turnover, and effector action in biological systems Girotti, A.W.
  16. Methods Enzymol. v.186 Role of free radicals and catalytic metal ions in human disease: An overview Halliwell, B.;Gutteridge, J.M.C. https://doi.org/10.1016/0076-6879(90)86093-B
  17. Chem. Phys. Lipids. v.44 Secondary products of lipid peroxidation Frankel, E.N. https://doi.org/10.1016/0009-3084(87)90045-4
  18. JAOCS v.70 Formation of headspace volatiles by thermal decom-position of oxidized fish oils vs. oxidized vegetable oils Frankel, E.N. https://doi.org/10.1007/BF02542598
  19. Free Rad. BioI. Med. v.11 Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes Esterbauer, H.;Schaur, R.J.;Zollner, H. https://doi.org/10.1016/0891-5849(91)90192-6
  20. J. Food Sci. v.66 Detection of lipid-derived aldehydes and aldehyde: protein adducts in vitro and in beef Lynch, M.P.;Faustrnan, C.;Silbart, L.K.;Rood, D.;Furr, H.C.
  21. J. Agric. Food Chem. v.48 Effect of aldehyde lipid peroxidation products on myoglobin Lynch, M.P.;Faustman, C. https://doi.org/10.1021/jf990732e
  22. J. Food Lipids v.1 Hexanal as an indicator of meat flavor deterioration Shahidi, F.;Pegg, R. https://doi.org/10.1111/j.1745-4522.1994.tb00245.x
  23. J. BioI. Chem. v.274 4-Hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress Okada, K.;Wangpoengtrakul, C.;Osawa, T.;Toyokuni, S.;Tanaka, K.;Uchida, K. https://doi.org/10.1074/jbc.274.34.23787
  24. Biochem. J. v.191 Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria Turrens, J.F.;Boveris, A.
  25. Crit. Rev. Food Sci. Nutr. v.35 The role of free radicals and antioxidants: How do we know that they are working? Thomas, M.J. https://doi.org/10.1080/10408399509527683
  26. Biochemistry v.35 Production of superoxide from hemoglobin-bound oxygen under hypoxic conditions Balagopalakrishna, C.;Manoharan, P.T.;Abugo, O.O.;Rifkind, J.M. https://doi.org/10.1021/bi952875+
  27. J. Agric. Food Chem. v.50 Myoglobin-induced lipid peroxidation. A review Baron, C.P.;Andersen, H.J. https://doi.org/10.1021/jf011394w
  28. Eur. J. Biochem. v.245 NADH oxidase activity of human xanthine oxidoreductase: Generation of superoxide anion Sanders-Stephen, A.;Eisenthal, R.;Harrison, R. https://doi.org/10.1111/j.1432-1033.1997.00541.x
  29. J. BioI. Chem. v.263 Superoxide-dependent oxidation of extracellular reducing agents by isolated neutrophils Thomas, E.L.;Learn, D.B.;Jefferson, M.M.;Weatherred, W.
  30. Biochirn. Biophys. Acta. v.594 Membrane surface charges and potentials in relation to photosynthesis Barber, J. https://doi.org/10.1016/0304-4173(80)90003-8
  31. Free. Rad. BioI. Med. v.20 Can superoxide organic chemistry be observed within the liposomal bilayer? Frimer, A.A.;Strul, G.;Buch, J.;Gottlieb, H.E. https://doi.org/10.1016/0891-5849(95)02148-5
  32. J. Am. Chem. Soc. v.103 Comparison of the capacities of the perhydroxyl and the superoxide radicals to initiate chain oxidation of linoleic acid Gebicki, J.M.;Bielski, B.H.J. https://doi.org/10.1021/ja00413a066
  33. J. BioI. Chem. v.258 A study of the reactivity of $HO_2/O_2$ with unsaturated fatty acids Bielski, B.H.J.;Ameli, R.L.;Sutherland, M.W.
  34. J. BioI. Chem. v.266 Perhydroxyl radical (HOO) initiated lipid peroxidation. The role of fatty acid hydroperoxides Aikens, J.;Dix, T.A.
  35. Arch. Biochern. Biophys v.305 Hydrodioxyl (perhydroxyl), peroxyl, and hydroxyl radical-initiated lipid peroxidation of large unilamellar vesicles (liposomes): comparative and mechanistic studies Aikens, J.;Dix, T.A. https://doi.org/10.1006/abbi.1993.1455
  36. Free Rad. BioI. Med. v.16 The role of $O_2$ in the production of OH': in vitro and in vivo Liochev, S.I.;Fridovich, I. https://doi.org/10.1016/0891-5849(94)90239-9
  37. Ann. Rev. Biochem. v.64 Superoxide radical and superoxide dismutase Fridovich, I. https://doi.org/10.1146/annurev.bi.64.070195.000525
  38. Free radicals in biology and medicine Halliwell, B.;Gutteridge, J.M.C.
  39. Poultry Sci. v.77 Effect of superoxide and superoxidegenerating systems on the prooxidant effect of iron in oil emulsion and raw turkey homogenates Ahn, D.U.;Kim, S.M.
  40. Free Rad. BioI. Med. v.16 Hydrogen peroxide production by red blood cells Giulivi, C.;Hochstein, P.;Davies, K.J.A. https://doi.org/10.1016/0891-5849(94)90249-6
  41. Meat Sci. v.46 Lipid peroxidation induced by oxymyoglobin and metrnyoglobin with involvement of $H_2O_2$ and superoxide anion Chan, W.K.M.;Faustman, C.;Yin, M.;Decker, E.A. https://doi.org/10.1016/S0309-1740(97)00014-4
  42. J. Agric. Food Chem. v.33 Hydrogen peroxide generation in ground muscle tissues Harel, S.;Kanner, J. https://doi.org/10.1021/jf00066a041
  43. Trends Neurosci. v.79 Oxygen radicals and the nervous systern Halliwell, B.;Gutteridge, J.M.C.
  44. Free Rad. BioI. Med. v.16 Spectral characterization of lipid peroxidation in rabbit lens membranes induced by hydrogen peroxide in the presence of $Fe^{2+}/Fe^{3+}$ cations: A site specific catalyzed oxidation Lamba, O.P.;Borchman, D.;Garner, W.H. https://doi.org/10.1016/0891-5849(94)90059-0
  45. Free. Rad. BioI. Med. v.4 Why is the hydroxyl radical the only radical that commonly adds to DNA? Hypothesis: It has a rare combination of high electrophilicity, high thermochemical reactivity, and a mode of production that can occur near DNA Pryor, W.A. https://doi.org/10.1016/0891-5849(88)90043-3
  46. FEBS Lett. v.157 The production of hydroxyl radicals by adriamycin in red blood cells Bannister, J.V.;Thomalley, P.J. https://doi.org/10.1016/0014-5793(83)81139-9
  47. J. Biochern. Biophys. Methods v.42 Determination of rate constants for the reactions of hydroxyl radicals with some purines and pyrimidines using sunlight Joseph, J.M.;Aravindakumar, C.T. https://doi.org/10.1016/S0165-022X(99)00054-8
  48. Arch. Biochem. Biophys. v.262 Hydroxyl free radical mediated formation of 8-hydroxyguanine in isolated DNA Floyd, R.A.;West, M.S.;Eneff, K.I.;Hogsett, W.E.;Tingey, D.T. https://doi.org/10.1016/0003-9861(88)90188-9
  49. Fundamental radiation chemistry of food components;Recent Advances in the Chemistry of Meat Swallow, A.J.;Bailey, A.J.(ed.)
  50. Arch. Biochem. Biophys v.323 Kinetics and Mechanisms of hypochlorous acid reactions Folkes, L.K.;Candeias, L.P.;Wardman, P. https://doi.org/10.1006/abbi.1995.0017
  51. Int. J. Radiat. BioI. Relat. Stud. Phys. Chern. Med. v.48 Scavenging of OH radicals produced in the sonolysis of water Henglein, A.;Kormann, C. https://doi.org/10.1080/09553008514551241
  52. Int. J. Radiat. BioI. Relat. Stud. Phys. Chern. Med. v.43 Action of some hydroxyl radical scavengers on radiation-induced haemolysis Miller, G.G.;Raleigh, J.A. https://doi.org/10.1080/09553008314550471
  53. J. Inorg. Biochem. v.29 The role of iron in ascorbate-dependent deoxyribose degradation. Evidence consistent with a site-specific hydroxyl radical generation caused by iron ions bound to the deoxyribose molecule Auroma, O.I.;Grootveld, M.;Halliwell, B. https://doi.org/10.1016/0162-0134(87)80035-1
  54. Free Rad. Res. Comms. v.8 Binding of iron to human red blood cell membranes Baysal, E.;Sullivan, S.G.;Stem, A. https://doi.org/10.3109/10715768909087972
  55. Biochem. J. v.224 Reactivity of hydroxyl and hydroxyl-like radicals discriminated by release of thiobarbituric acid-reactive material from deoxy sugars, nucleosides, and benzoate Gutteridge, J.M.
  56. Free Rad. Res. Comms. v.12 Studies of hypervalent iron Bielski, B.H.J.
  57. J. Free Rad. BioI. Med. v.1 The reaction of ferrous EDTA with hydrogen peroxide: Evidence against hydroxyl radical formation Koppenol, W.H. https://doi.org/10.1016/0748-5514(85)90132-1
  58. Free Rad. BioI. Med. v.13 Fenton reactions may not initiate lipid peroxidation in an emulsified linoleic acid model system Yin, D.;Lingnert, H.;Ekstrand, B.;Brunk, U.T. https://doi.org/10.1016/0891-5849(92)90149-B
  59. Nature v.181 Free radical produced in the reaction of metmyoglobin with hydrogen peroxide Gibson, J.F.;Ingram, D.J.E.;Nicholls, P. https://doi.org/10.1038/1811398a0
  60. Free Rad. Res. Comms. v.5 The generation of ferryl of hydroxyl radicals during interaction of haemproteins with hydrogen peroxide Harel, S.;Kanner, J. https://doi.org/10.3109/10715768809068555
  61. Free Rad. Res. Comms. v.7 Direct detection of peroxyl radicals formed in the reactions of metmyoglobin and methaemoglobin with t-butyl hydroperoxide Davies, M.J. https://doi.org/10.3109/10715768909088158
  62. J. BioI. Chem. v.275 Formation of compound I in the reaction of native myoglobins with hydrogen peroxide Egawa, T.;Shimada, H.;Ishimura, Y. https://doi.org/10.1074/jbc.M004026200
  63. J. Agric. Food Chem. v.38 ESR spin-trapping studies of free radicals generated by hydrogen peroxide activation of metmyoglobin Xu, Y.;Asghar, A.;Gran, J.I.;Pearson, A.M.;Haug, A.;Grulke, E.A. https://doi.org/10.1021/jf00097a014
  64. Free. Rad. BioI. Med. v.32 Deleterious iron-mediated oxidation of biomolecules Welch, K.D.;Zane Davis, T.;Van Eden, M.E.;Aust, S.D. https://doi.org/10.1016/S0891-5849(02)00760-8
  65. Inorganic Biochemistry of Iron Metabolisrn Crichton, R.
  66. J. Food Sci. v.47 Measurement and content of nonheme and total iron in muscle Schricker, B.R.;Miller, D.D.;Stouffer, J.R. https://doi.org/10.1111/j.1365-2621.1982.tb12704.x
  67. J. Sci. Food. Agric. v.33 Iron and zinc compounds in the muscle meats of beef, lamb, pork and chicken Hazell, T. https://doi.org/10.1002/jsfa.2740331017
  68. J. Food Sci. v.48 Effects of cooking and chemical treatment on heme and nonheme iron in meat Schricker, B.R.;Miller, D.D. https://doi.org/10.1111/j.1365-2621.1983.tb09225.x
  69. J. Food Sci. v.58 Iron distribution in heated beef and chicken muscles Han, D.;McMillin, K.W.;Godber, J.S.;Bidner, T.D.;Younathan, M.T.;Marshall, D.L.;Hart, L.T. https://doi.org/10.1111/j.1365-2621.1993.tb09337.x
  70. Eur. J. Biochem. v.164 Iron transport and storage Crichton, R.R.;Charloteaux-Wauters, M. https://doi.org/10.1111/j.1432-1033.1987.tb11155.x
  71. Free Rad. BioI. Med. v.12 Ferritin as a source of iron for oxidative damage Reif, D.W. https://doi.org/10.1016/0891-5849(92)90091-T
  72. J. Lipid Res. v.40 Lipolysisinduced iron release from diferric transferrin: possible role of lipoprotein lipase in LDL oxidation Balagopalakrishna, C.;Pak, L.;Pillarisetti, S.;Goldberg, J.J.
  73. Free Rad. BioI. Med. v.3 Superoxide ion as a primary reductant in ascorbate-mediated ferritin iron release Boyer, R.F.;McCleary, C.J. https://doi.org/10.1016/0891-5849(87)90017-7
  74. J. Food Sci. v.56 Factors affecting catalysis of lipid peroxidation by a ferritin-containing extract of beef muscle Seman, D.L.;Decker, E.A.;Crum, A.D. https://doi.org/10.1111/j.1365-2621.1991.tb05279.x
  75. J. Agric. Food Chem. v.38 Role of ferritin as a lipid peroxidation catalyst in muscle food Decker, E.A.;Welch, B. https://doi.org/10.1021/jf00093a019
  76. J. Agric. Food Chem. v.39 Ferritin in turkey muscle tissue: A source of catalytic iron ions for lipid peroxidation Kanner, J.;Doll, L. https://doi.org/10.1021/jf00002a004
  77. Biochem. J. v.234 Formation of hydroxyl radicals in the presence of ferritin and haemosiderin. Is haemosiderin formation a biological protective mechanism? O'Connell, M.;Halliwell, B.;Moorhouse, C.P.;Aruoma, O.I.;Baum, H.;Peter, T.J.
  78. J. BioI. Chem. v.259 Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site Graf, E.;Mahoney, J.R.;Bryant, R.G.;Eaton, J.W.
  79. Int. J. Biochem. v.18 Non-ferritin, non-heme iron pools in rat tissues Mulligan, M.;Althaus, B.;Linder, M.C. https://doi.org/10.1016/0020-711X(86)90055-8
  80. J. Clin. Invest v.90 Low molecular weight iron and the oxygen paradox in isolated rat hearts Voogd, A.;Sluiter, W.;Van Eijk, H.G.;Koster, J.F. https://doi.org/10.1172/JCI116086
  81. Free Rad. BioI. Med. v.13 Intracellular free iron in liver tissue and liver homogenate: Studies with electron paramagnetic resonance on the formation of paramagnetic complexes with desferal and nitric oxide Kozlov, A.Y.;Yegorov, D.Y.;Vladimirov, Y.A.;Azizova, O.A. https://doi.org/10.1016/0891-5849(92)90159-E
  82. Biochim. Biophys. Acta. v.843 Mitochondrial iron not bound in heme and ironsulfur centers and its availability for heme synthesis in vivo Tangeras, A. https://doi.org/10.1016/0304-4165(85)90140-0
  83. J. Agric. Food Chem. v.36 Catalytic 'free' iron ions in muscle foods Kanner, J.;Hazan, B.;Doll, L. https://doi.org/10.1021/jf00081a002
  84. Radiat. Res. v.145 Catalytic metals, ascorbate and free radicals: Combinations to avoid Buettner, G.R.;Jurkiewicz, B.A. https://doi.org/10.2307/3579271
  85. J. Agric. Food Chem. v.39 Lipid peroxidation of muscle food as affected by NaCI Kanner, J.;Harel, S.;Jaffe, R. https://doi.org/10.1021/jf00006a002
  86. Meat Sci. v.25 Catalysts of lipid peroxidation in meat products Johns, A.M.;Birkinshaw, L.H.;Ledward, D.A. https://doi.org/10.1016/0309-1740(89)90073-9
  87. Meat Sci. v.34 Catalysis of lipid peroxidation in muscle model systems by haem and inorganic iron Monahan, F.J.;Crackel, R.L.;Gray, J.I.;Buckley, D.J.;Morrisey, P.A. https://doi.org/10.1016/0309-1740(93)90020-I
  88. J. Food Sci. v.60 Lipid stability of beef model systems with heating and iron fractions Han, D.;McMillin, K.W.;Godber, J.S.;Bidner, T.D.;Younathan, M.T.;Hart, L.T. https://doi.org/10.1111/j.1365-2621.1995.tb09836.x
  89. Meat Sci. v.62 Role of deoxyhemoglobin in lipid peroxidation of washed cod muscle mediated by trout, poultry and beef hemoglobins Richards, M.P.;Modra, A.M.;Li, R. https://doi.org/10.1016/S0309-1740(01)00242-X
  90. J. Food Biochem. v.11 Lipid peroxidation in retail beef, pork and chicken muscles as affected by concentrations of heme pigments and nonheme iron and microsomal enzymic lipid peroxidation activity Rhee, K.S.;Ziprin, Y.A. https://doi.org/10.1111/j.1745-4514.1987.tb00109.x
  91. J. Agric. Food Chem. v.36 Muscle lipid peroxidation dependent on oxygen and free metal ions Kanner, J.;Shegalovich, I.;Harel, S.;Hazan, B. https://doi.org/10.1021/jf00081a001
  92. J. Agric. Food Chem. v.36 Antioxidant activity of ceruloplasmin in muscle membrane and in situ lipid peroxidation Kanner, J.;Sofer, F.;Harel, S.;Doll, L. https://doi.org/10.1021/jf00081a003
  93. Poultry Sci. v.72 The effect of free and bound iron on lipid peroxidation in turkey meat Ahn, D.U.;Wolfe, F.R.;Sim, J.S. https://doi.org/10.3382/ps.0720209
  94. Poultry Sci. v.77 Prooxidant effects of ferrous iron, hemoglobin, and ferritin in oil emulsion and cooked meat homogenates are different from those in raw-meat homogenates Ahn, D.U.;Kim, S.M.
  95. Food Chem. v.25 Effect of haemoglobin and ferritin on lipid peroxidation in raw and cooked muscle systems Apte, S.;Morrissey, P.A. https://doi.org/10.1016/0308-8146(87)90061-6
  96. Arch. Biochem. Biophys. v.237 Initiation of membranal lipid peroxidation by activated metmyoglobin and methemoglobin Kanner, J.;Harel, S. https://doi.org/10.1016/0003-9861(85)90282-6
  97. J. BioI. Chem. v.269 The lipoxygenase activity of myoglobin. Oxidation of linoleic acid by the ferryl oxygen rather than protein radical Rao, S.I.;Wilks, A.;Hamberg, M.;Ortiz de Montellano, P.R.
  98. Arch. Biochem. Biophys. v.344 Myoglobin-catalyzed bis-Allylic hydroxylation and epoxidation of linoleic acid Hamberg, M. https://doi.org/10.1006/abbi.1997.0194
  99. Mechanism of nonenzymic lipid peroxidation in muscle foods;Lipid Peroxidation in Foods, ACS Symposium Series 500 Kanner, J.;Angelo, A.J.(ed.)
  100. J. Agric. Food. Chem. v.35 Catalysis of lipid peroxidation in raw and cooked beef by $metmyoglobin-H_2O_2$, nonheme iron, and enzyme systems Rhee, K.S.;Ziprin, Y.A.;Ordonez, G. https://doi.org/10.1021/jf00078a037
  101. Free Rad. BioI. Med. v.28 Peroxidation of linoleate at physiological pH: hemichrome formation by substrate binding protects against metmyoglobin activation by hydrogen peroxide Baron, C.P.;Skibsted, L.H.;Andersen, H.J. https://doi.org/10.1016/S0891-5849(99)00240-3
  102. J. Agric. Food Chem. v.50 Concentration effects in myoglobin-catalyzed peroxidation of linoleate Baron, C.P.;Skibsted, L.H.;Andersen, H.J. https://doi.org/10.1021/jf011169e
  103. Free Rad. Res. Comms. v.5 Iron release from metmyoglobin, methaemoglobin and cytochrome c by a system generating hydrogen peroxide Harel, S.;Salan, M.A.;Kanner, J. https://doi.org/10.3109/10715768809068554
  104. Biochem. J. v.245 Studies on the metal-ion and lipoxygenase-catalysed breakdown of hydroperoxides using electronspin-resonance spectroscopy Davies, M.J.;Slater, T.F.
  105. Biochim. Biophys. Acta. v.794 Kinetic and mechanism of vesicle lipoperoxide decomposition by Fe(II) Garnier-Suillerot, A.;Tosi, L.;Paniago, E. https://doi.org/10.1016/0005-2760(84)90160-7
  106. Arch. Biochem. Biophys. v.284 Site-specific mechanisms of initiation by chelated iron and inhibition by alpha-tocopherol of lipid peroxide-dependent lipid peroxidation in charged micelles Fujii, T.;Hiramoto, Y.;Terao, J.;Fukuzawa, K. https://doi.org/10.1016/0003-9861(91)90273-L
  107. Free Rad. Res. v.27 Iron (III) stimulation of lipid hydroperoxide-dependent lipid peroxidation Tadolini, B.;Cabrini, L.;Menna, C.;Pinna, G.G.;Hakim, G. https://doi.org/10.3109/10715769709097860
  108. Biochem. J. v.352 The mechanism of Fe(2+)initiated lipid peroxidation in liposomes: the dual function of ferrous ions, the roles of the pre-existing lipid peroxides and the lipid peroxyl radical Tang, L.;Zhang, Y.;Qian, Z.;Shen, X. https://doi.org/10.1042/0264-6021:3520027
  109. Free Rad. Biol. Med. v.8 Microsomal lipid peroxidation: The role of NADPH - Cytochrome P450 reductase and cytochrome P450 Sevanian, A.;Nordenbrand, K.;Kim, E.;Ernster, L.;Hochstein, P. https://doi.org/10.1016/0891-5849(90)90087-Y
  110. Xenobiotica v.20 Cytochrome P450-dependent formation of reactive oxygen radicals: isozymespecific inhibition of P-450-mediated reduction of oxygen and carbon tetrachloride Persson, J.O.;Terelius, Y.;Ingelman-Sundberg, M. https://doi.org/10.3109/00498259009046904
  111. Proc. Natl. Acad. Sci. U.S.A. v.91 Cytochrome P-450 mediates tissuedamaging hydroxyl radical formation during reoxygenation of the kidney Paller, M.S.;Jacob, H.S.
  112. Experientia v.42 Hydroxyl radicals are not involved in NADPH dependent microsomal lipid peroxidation Bast, A.;Steeghs, M.H. https://doi.org/10.1007/BF01946700
  113. J. Food Sci. v.49 Enzymic lipid peroxidation in microsomal fractions from beef skeletal muscle Rhee, K.S.;Dutson, T.R.;Smith, G.C. https://doi.org/10.1111/j.1365-2621.1984.tb13186.x
  114. J. Agric. Food Chem. v.34 Muscle membranal lipid peroxidation by an 'iron redox cycle' system: Initiation by oxy radicals and site-specific mechanism Kanner, J.;Harel, S.;Hazan, B. https://doi.org/10.1021/jf00069a034
  115. Food Technol. v.42 no.6 Enzymic and nonenzymic catalysis of lipid peroxidation in muscle foods Rhee, K.S.
  116. J. Agric. Food Chem. v.33 Lipid peroxidation in fish tissue. Enzymatic initiation via lipoxygenase German, J.B.;Kinsella, J.E. https://doi.org/10.1021/jf00064a028
  117. J. Sci. Food Agric. v.81 12-Lipoxygenase activity in the muscle tissue of Atlantic mackerel (Scomber scombrus) and its prevention by antioxidants Saeed, S.;Howell, K.K. https://doi.org/10.1002/jsfa.878
  118. Biochim. Biophys. Acta. v.1128 Mammalian lipoxygenase: molecular structures and functions Yamamoto, S. https://doi.org/10.1016/0005-2760(92)90297-9
  119. Free Rad. Biol. Med. v.33 Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes Kuhn, H.;Borchert, A. https://doi.org/10.1016/S0891-5849(02)00855-9
  120. Meat Sci. v.49 Lipid stability in meat and meat products Morrissey, P.A.;Sheehy, P.J.A.;Galvin, K.;Kerry, J.P.;Buckley, D.J. https://doi.org/10.1016/S0309-1740(98)90039-0
  121. J. Agric. Food Chem. v.24 no.1 Effect of total lipids and phospholipids on warmed-over flavor in red and white muscle from several species as measured by thiobarbituric acid analysis Wilson, B.R.;Pearson, A.M.;Shorland, F.E. https://doi.org/10.1021/jf60203a040
  122. J. Food Sci. v.49 Relative role of phospholipids, triacylglycerols, and cholesterol esters on malonaldehyde formation in fat extracted from chicken meat Pikul, J.;Leszczynski, D.E.;Kummerow, F.A. https://doi.org/10.1111/j.1365-2621.1984.tb13192.x
  123. Food Chem. v.5 no.4 Role of triglycerides and phospholipids on development of rancidity in model meat systems during frozen storage Igene, J.O.;Pearson, A.M.;Dugan, L.R. Jr.;Price, J.F. https://doi.org/10.1016/0308-8146(80)90048-5
  124. Food Chem. v.51 no.2 The influence of microsomal and cytosolic components on the oxidation of myoglobin and lipid in vitro Yin, M.C.;Faustrnan, C. https://doi.org/10.1016/0308-8146(94)90250-X
  125. Meat Sci. v.59 Relationship between lipid peroxidation and fat content in Japanese Black beef Longissimus muscle during storage Sasaki, K.;Mitsumoto, M.;Kawabata, K. https://doi.org/10.1016/S0309-1740(01)00093-6
  126. J. Food Sci. v.60 Dietary a-linoleic acid and mixed tocopherols, and packaging influences on lipid stability in broiler chicken breast and leg muscle Ahn, D.U.;Wolfe, F.R.;Sim, J.S. https://doi.org/10.1111/j.1365-2621.1995.tb06282.x
  127. Meat Sci. v.52 Membrane lipid peroxidation and proteolytic activity in thigh muscles from broilers fed different diets Sarraga, C.;Garcia Regueiro, J.A. https://doi.org/10.1016/S0309-1740(98)00170-3
  128. Atherosclerosis v.155 no.1 Enhanced level of n-3 fatty acid in membrane phospholipids induces lipid peroxidation in rats fed dietary docosahexaenoic acid oil Song, J.H.;Miyazawa, T. https://doi.org/10.1016/S0021-9150(00)00523-2
  129. J. Food Sci. v.61 Lipid peroxidation potential of beef, chicken, and pork Rhee, K.S.;Anderson, L.M.;Sams, A.R. https://doi.org/10.1111/j.1365-2621.1996.tb14714.x
  130. J. Food Qual. v.12 Lipid peroxidation in turkey meat as influenced by salt metal cations and antioxidants Salih, A.M.;Price, J.F.;Simth, D.M.;Dawson, L.E. https://doi.org/10.1111/j.1745-4557.1989.tb00310.x
  131. Meat Sci. v.61 Volatile profiles, lipid peroxidation and sensory characteristics of irradiated meat from different animal species Kim, Y.R.;Nam, K.C.;Ahn, D.U. https://doi.org/10.1016/S0309-1740(01)00191-7
  132. Meat Sci. v.55 The effect of oxygen level and exogenous ${\alpha}-tocopherol$ on the oxidative stability of minced beef in modified atmosphere packs O'Grady, M.N.;Monahan, F.J.;Burke, R.M.;Allen, P. https://doi.org/10.1016/S0309-1740(99)00123-0
  133. Meat Sci. v.61 Use of oxygen sensors to non-destructively measure the oxygen content in modified atmosphere and vacuum packed beef: impact of oxygen content on lipid peroxidation Smiddy, M.;Fitzgerald, M.;Kerry, J.P.;Papkovsky, D.B.;OSullivan, C.K.;Guilbault, G.G. https://doi.org/10.1016/S0309-1740(01)00194-2
  134. J. Food Sci. v.57 Packaging cooked turkey meat patties while hot reduces lipid peroxidation Ahn, D.U.;Wolfe, F.R.;Sim, J.S.;Kim, D.H. https://doi.org/10.1111/j.1365-2621.1992.tb11267.x
  135. J. Food Sci. v.58 Oxygen availability affects prooxidant catalyzed lipid peroxidation of cooked turkey patties Ahn, D.U.;Ajuyah, A.;Wolfe, F.R.;Sim, J.S. https://doi.org/10.1111/j.1365-2621.1993.tb04255.x
  136. J. Food Sci. v.58 Prevention of lipid peroxidation in pre-cooked turkey meat patties with hot packaging and antioxidant combinations Ahn, D.U.;Wolfe, F.R.;Sim, J.S. https://doi.org/10.1111/j.1365-2621.1993.tb04256.x
  137. J. Food Sci. v.64 Kinetic studies of oxygen dependence during initial lipid peroxidation in rapeseed oil Andersson, K.;Lingnert, H. https://doi.org/10.1111/j.1365-2621.1999.tb15879.x
  138. Food Technol v.42 no.7 Perspectives on warmed-over flavor Asghar, A.;Gray, J.I.;Buckley, D.J.;Pearson, A.M.;Booren, A.M.
  139. Food Chem. v.18 Mechanisms by which nitrite inhibits the development of warmed-over flavor in cure meat Igene, J.O.;Yamauchi, K.;Pearson, A.M.;Gray, J.I.;Aust, S.D. https://doi.org/10.1016/0308-8146(85)90099-8
  140. J. Food Lipids v.1 Development of lipid peroxidation and inactivation of antioxidant enzymes in cooked pork and beef Mei, L.;Crum, A.D.;Decker, E.A. https://doi.org/10.1111/j.1745-4522.1994.tb00252.x
  141. J. Food Sci. v.61 Lipid peroxidation in cooked turkey as affected by added antioxidant enzymes Lee, S.K.;Mei, L.;Decker, E.A. https://doi.org/10.1111/j.1365-2621.1996.tb12190.x
  142. J. Food Sci. v.49 Some factors influencing the nonheme iron content of meat and its implications in oxidation Chen, C.C.;Pearson, A.M.;Gray, J.I.;Fooladi, M.H.;Ku, P.K. https://doi.org/10.1111/j.1365-2621.1984.tb12473.x
  143. J. Food Sci. v.59 Lipid peroxidation and chemical changes in catfish (lctalurus punctatus) muscle micro somes during frozen storage Eun, J.B.;Boyle, J.A.;Hearnsberger, J.O. https://doi.org/10.1111/j.1365-2621.1994.tb06941.x
  144. Storage stability of meat products as affected by organic acid and inorganic additives and functional ingredients;Quality Attributes of Muscle Foods Rhee, K.S.;Xiong, Y.L.(ed.);Ho, C.(ed.);Shahidi, F.(ed.)
  145. J. Food Prot. v.46 Effect of reduction and replacement of sodium chloride on rancidity development in raw and cooked ground pork Rhee, K.S.;Smith, G.C.;Terrell, R.N.
  146. J. Agric. Food Chem. v.39 Lipid peroxidation of muscle food: the role of the cytosolic fraction Kanner, J.;Salan, M.A.;Harel, S.;Shegalovich, I. https://doi.org/10.1021/jf00002a003
  147. Meat Sci. v.57 Pro-oxidant effects of NaCl in microbial growth-controlled and uncontrolled beef and chicken Rhee, K.S.;Ziprin, Y.A. https://doi.org/10.1016/S0309-1740(00)00083-8
  148. Meat Sci. v.46 Influence of sodium chloride on antioxidant enzyme activity and lipid peroxidation in frozen ground pork Lee, S.K.;Mei, L.;Decker, E.A. https://doi.org/10.1016/S0309-1740(97)00029-6
  149. Meat Sci. v.61 Chloride salt type/ionic strength, muscle site and refrigeration effects on antioxidant enzymes and lipid peroxidation in pork Hernandez, P.;Park, D.;Rhee, K.S. https://doi.org/10.1016/S0309-1740(01)00212-1
  150. Designing foods-Animal product options in the marketplace. Existing technological options and future research needs National Research Council