Antioxidant Activities of Garlic (Allum sativum L.) with Growing Districts

  • Lee, Eun-Jung (Department of Food and Nutrition, Hannam University) ;
  • Kim, Kwan-Soo (Department of Food and Nutrition, Hannam University) ;
  • Jung, Hye-Young (R & D Center for Future Technologies, Altwell Inc.) ;
  • Kim, Deuk-Ha (R & D Center for Future Technologies, Altwell Inc.) ;
  • Jang, Hae-Dong (Department of Food and Nutrition, Hannam University)
  • Published : 2005.02.28

Abstract

Hydrogen-donating capacity, scavenging activity of reactive oxygen including superoxide anion radical and hydrogen peroxide, metal-chelating activity, and reducing power of garlic extracts were investigated. All tested garlic extracts exhibited in vitro antioxidant activities, with Uiseong extract showing highest hydrogen-donating and hydrogen peroxide-scavenging activities, and reducing power, followed by Seosan and Samchek extracts, in proportion to total thiosulfinate contents. Higher scavenging activity of superoxide anion radical was observed in Uiseong than Seosan and Samchek extracts. Metal-chelating activity increased in order of Uiseong < Seosan < Samchek, showing inverse relations to total thiosulfinate content. Garlic extracts of Uiseong and Seosan showed weak prooxidant activities and that of Samchek showed strong antioxidant activity against $Cu^{+2}$-induced human LDL oxidation. Protective effects on peroxyl and hydroxyl radical-induced DNA strand damages were observed in all tested garlic cloves. These results indicate growing conditions of garlic cloves affect total thiosulfinate content and antioxidant activities.

Keywords

References

  1. Physiol. Rev. v.82 Free radicals in the physiological control of cell function Droge, W.
  2. Food Chem. Toxicol. v.33 The characterization of antioxidants Halliwell, B.;Aeschbach, R.;Loliger, J.;Aruoma, O.I. https://doi.org/10.1016/0278-6915(95)00024-V
  3. J. Nat. Prod. v.63 Flavonoid as antioxidants Pieta, P.G. https://doi.org/10.1021/np9904509
  4. Food Chem v.72 Natural antioxidants from residual sources Moure, A.;Cruz, J.M.;Franco, D.;Domingues, J.M.;Sineiro, J.;Domfngues, H.;Nunez, M.J.;Parajo, J.C. https://doi.org/10.1016/S0308-8146(00)00223-5
  5. Natrrre v.362 The pathogenesis of atherosclerosis: A perspective for the 1990s Ross, R. https://doi.org/10.1038/362801a0
  6. New Engl. J. Med. v.320 Beyond cholesterol modification of low density lipoprotein that increase its atherogenicity Steinberg, D.;Parthasarathy, S.;Carew, T.E.;Khoo, J.C.;Witztem, J.L.
  7. J. Agric. Food Chem. v.46 Effect of hydroxytyrosol found in extra virgin olive oil on oxidative DNA damage and low-density lipoprotein oxidation Aruoma, O.I.;Deiana, M.;Jenner, A.;Haliwell, B.;Kaur, H.;Banni, S.;Corongiu, F.P.;Dessi, M.A.;Aeschbach, R. https://doi.org/10.1021/jf980649b
  8. Garlic: A review of its medicinal effects and indicated active compounds;Phytomedicines of Europe: their Chemistry and Biological Activity Lawson, L.D.;Lawson, L.D.(ed.);Bauer, R.(ed.)
  9. Nutr. Res. v.10 Allum sativum (garlic) and cancer prevention Lau, B.H.S.;Tadi, P.P.;Tosk, J.M. https://doi.org/10.1016/S0271-5317(05)80057-0
  10. Biochim. Biophys. Res. Commun. v.244 Differential induction of NAD(P)H quinine oxidoreductase by anticarcinogenic organosulfides from garlic Singh, S.V.;Pan, S.S.;Srivatava, S.K.;Xia, H.;Hu, X.;Zaren, H.A.;Orchard, J.L. https://doi.org/10.1006/bbrc.1998.8352
  11. Phytomedicine v.5 Immunomodulation and antitumor activities of aged garlic extract Kyo, E.;Uda, N.;Suzuki, A.;Kakimoto, M.;Ushujima, M.;Kasuga, S.;ltakura, Y. https://doi.org/10.1016/S0944-7113(98)80064-0
  12. Phytomedicine v.6 Effects of garlic preparations on superoxide production by phorbol ester activated granulocytes Siegers, C.P.;Robke, A.;Pentz, R. https://doi.org/10.1016/S0944-7113(99)80029-4
  13. Biosci. Biotechnol. Biochem. v.60 Antimutagenic effects of ajoene, an organosulfur compound derived from garlic Ishikawa, K.;Naganawa, R.;Yoshida, H.;Iwata, N.;Fukuda, H.;Fujino, T.;Suzuki, A. https://doi.org/10.1271/bbb.60.2086
  14. Ind. J. Exp. BioI. v.29 Effect of garlic supplementation to cholesterol-rich diet on development of atherosclerosis in rabbits Mirhadi, S.A.;Singh, S.
  15. J. Agric. Food Chem. v.40 Inhibitiors of platelet aggregation generated from mixtures of Allium species and/or SAlk(en)yl-L-cysteine sulfoxide Morimitsu, Y.;Morioka, Y.;Kawakishi, S. https://doi.org/10.1021/jf00015a002
  16. Planta. Med. v.58 Vitro virucidal effects of Allium sativum (garlic) extract and compounds Weber, N.D.;Anderson, D.O.;North, J.A.;Murray, B.K.;Lawson, L.D.;Hughes, B.G. https://doi.org/10.1055/s-2006-961504
  17. Korean J. Food Sci. Technol v.29 Physiological activity of Alliin and ethanol extract from Korean garlic (Allium sativum L.) Lim, S.W.;Kim, T.H.
  18. Mol. Cell. Biochem. v.148 Antioxidant activity of allicin, an active principle in garlic Prasad, K.;Laxdal, V.A.;Yu, M.;Raney, B.L. https://doi.org/10.1007/BF00928155
  19. J. Agric. Food Chem. v.46 Antioxidant activity of several Allium members Yin, M.C.;Cheng, W.S. https://doi.org/10.1021/jf980344x
  20. Biochem. Biophys. Acta v.1379 The mode of action of allicin: trapping of radicals and interaction with thiol containing proteins Rabinkov, A.;Miron, T.;Konstantinovski, I.;Wilchek, M.;Mirelman, D.;Weiner, L. https://doi.org/10.1016/S0304-4165(97)00104-9
  21. Jpn. J. Cancer Res. v.52 High correlation between lipid peroxide radical and tumor-promoter effect: suppression of tumor promotion in the Epstein-Barr virus/B-lymphocyte system and scavenging of alkyl peroxide radicals by various vegetables extracts Maeda, H.;Katsuki, T.;Akaike, T.;Yasutake, R.
  22. J. Lab. Clin. Med. v.119 Free radicals, antioxidants, and human diseases: where are we now? Halliwell, B.;Gutteridge, J.M.C.;Corss, E.E.J.
  23. Pharmacol. Ther. v.55 The approach to understanding aromatic hydrogencarbon carcinogenesis. The central role of radical cations in metabolic action Cvalieri, E.L.;Rogan, E.G. https://doi.org/10.1016/0163-7258(92)90015-R
  24. Trends Pharmacol. Sci. v.14 Modulation of platelet function by free radicals and free-radical scavengers Savemini, D.;Botting, R. https://doi.org/10.1016/0165-6147(93)90028-I
  25. Res. Commun. Chem. Pathol. Pharmacol. v.74 Effects on active oxygen species of alliin and Allium sativum (garlic) powder Kourounakis, P.N.;Rekka, E.A.
  26. Pharmazie v.49 Investigation of the molecular mechanism of the antioxidant activity of some Allium sativum ingredients Rekka, E.A.;Kourounakis, P.N.
  27. J. Agric. Food Chem. v.50 Antioxidant functions of selected Allium thiosulfinates and S-alk(en)yl-L-cysteine sulfoxides Xiao, H.;Parkin, K.L. https://doi.org/10.1021/jf011137r
  28. Korean J. Food Sci. Technol. v.33 Effects of extraction conditions on the functional properties of garlic extracts Byun, P.H.;Kim, W.J.;Yoon, S.K.
  29. Anal. Biochem. v.307 A spectrophotometric assay for allicin, alliin, and alliinase (alliin lyase) with a chromogenic thiol: reaction of 4-mercaptopyridine with thiosulfinates Miron, T.;Shin, I.;Feigenblat, G.;Weiner, I.;Mirelman, D.;Wilchek, M.;Rabinkov, A. https://doi.org/10.1016/S0003-2697(02)00010-6
  30. J. Agric. Food Chem. v.46 Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein Chen, H.M.;Muramoto, K.;Yamauchi, F.;Fujimoto, K.;Nokihara, K. https://doi.org/10.1021/jf970649w
  31. Convenient assays for superoxide dismutase;CRC handbook of free radicals and antioxidants in biomedicine Leopold, F.;Reinhard, B.;Regina, B.;Edmund, I.;Fritz, O.;Mquel, J.(ed.)
  32. J. Agric. Food Chem. v.42 Scavenging effect of methanolic extracts of peanut hulls on free radical and active oxygen species Yen, G.C.;Duh, P.D. https://doi.org/10.1021/jf00039a005
  33. J. Agric. Food Chem. v.38 Role of ferritine as a lipid oxidation catalyst in muscle food Decker, E.A.;Welch, B. https://doi.org/10.1021/jf00093a019
  34. Food Sci. Biotechnol. v.12 Antioxidant activity of enzymatic hydrolysates from whelk (Buccinum middendorffiverkrii) internal organ Son, M.R.;Park, J.H.;Lee, S.C.
  35. Mol. Cell. Biochem. v.218 Evaluation of antioxidant activity of epigallocatechin gallate in biphasic model systems in vitro Hu, C.;Kittts, D.D. https://doi.org/10.1023/A:1007220928446
  36. Food Chem. Toxicol. v.39 Antioxidant activity of a Rhus vemiciflua Stokes ethanol extract Lim, K.T.;Hu, C.;Kitts, D.D. https://doi.org/10.1016/S0278-6915(00)00135-6
  37. J. Agric. Food Chem. v.49 Antioxidant activity of extracts from Acacia confuse bark and heartwood Chang, S.T.;Wu, J.H.;Wang, S.Y.;Kang, P.I.;Yang, N.S.;Shyur, L.F. https://doi.org/10.1021/jf0100907
  38. J. Agric. Food Chem. v.52 Quantitative determination of allicin in garlic: supercritical fluid extraction and standard addition of alliin Rybak, M.E.;Calvey, E.M.;Hamly, J.M. https://doi.org/10.1021/jf034853x
  39. Bioactive compounds of garlic and garlic products;ACS Symposium Series 534, Human Medicinal Agents from Plants Lawson, L.D.;Kinghorn, A.D.(ed.);Balandrin, M.F.(ed.)
  40. J. Agric. Food Chem. v.50 Nonenzymatic antioxidant of four organosulfur compounds derived from garlic Yin, N.C.;Hwang, S.W.;Chan, K.C. https://doi.org/10.1021/jf0204203
  41. The mechanism of antioxidant action in vitro;Food antioxidants Gordon, M.R.;Hudson, B.J.F.(ed.)
  42. Free Radic. Res. v.27 Will the good fairies prove us that vitamin E lessens human degenerative disease? Diplock, A.T.
  43. J. Agric. Food Chem. v.46 Antioxidant and prooxidant activities of elderberry (Sambucus nigra) extraction in low-density lipoprotein oxidation Abuja, M.P.;Murkovic, M.;Pfannhauser, M. https://doi.org/10.1021/jf980296g
  44. Free Radic. BioI. Med. v.22 Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships Cao, G.;Sofic, E.;Prior, R.L. https://doi.org/10.1016/S0891-5849(96)00351-6
  45. Effects of flavonoids on the oxidation of low-density lipoprotein;Flavonoids in health and disease Leake, D.S.;Rice-Evans, C.(ed.);Packer, L.(ed.)
  46. Methods Enzymol. v.299 Measurement of oxidizability of blood plasma Kontush, A.;Beisiegel, U. https://doi.org/10.1016/S0076-6879(99)99007-9
  47. J. Agric. Food Chem. v.49 Antioxidant effects of phenolic rye (Secaie cereaie L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low density lipoproteins Andreason, M.;Landbo, A.K.;Christensen, L.P.;Hansen, A.;Meyer, A.S. https://doi.org/10.1021/jf0101758
  48. J. Agric. Food Chem. v.51 Antioxidative activity of sulfur-containing compounds in Allium species for human lowdensity lipoprotein (LDL) oxidation in vitro Higuchi, O.;Tateshita, K.;Nishimura, H. https://doi.org/10.1021/jf034294u
  49. J. Agric. Food Chem. v.52 Antioxidative and antiglycative effects of six organosulfur compounds in low-density lipoprotein and plasma Huang, C.N.;Homg, J.S.;Yin, M.C. https://doi.org/10.1021/jf0307292
  50. J. Agric. Food Chem. v.51 Antioxidant activity of anthocyanins and their aglycones Kahkonen, M.P.;Heinonen, M. https://doi.org/10.1021/jf025551i
  51. Free Radic. BioI. Med. v.20 Factors affecting DNA damage caused by lipid hydroperoxides and aldehydes Yang, M.R.;Schaich, K.M. https://doi.org/10.1016/0891-5849(95)02039-X
  52. J. Food Sci. v.67 Antioxidant activity and protective effect on DNA cleavage ofresveratrol Acquavita, R.;Campisi, A.;Sorrenti, V.;Di Giacomo, C.;Barcellona, M.L.;Avitabile, M.;Vanella, A. https://doi.org/10.1111/j.1365-2621.2002.tb11373.x