cAMP-response Element-binding Protein Is not Essential for Osteoclastogenesis Induced by Receptor Activator of NF-${\kappa}B$ Ligand

  • Kim, Ha-Neui (Department of Cell and Developmental Biology, DRI, BK21 Program, School of Dentistry, Seoul National University) ;
  • Ha, Hyun-Il (Department of Cell and Developmental Biology, DRI, BK21 Program, School of Dentistry, Seoul National University) ;
  • Lee, Jong-Ho (Department of Cell and Developmental Biology, DRI, BK21 Program, School of Dentistry, Seoul National University) ;
  • Kwak, Han-Bok (Department of Cell and Developmental Biology, DRI, BK21 Program, School of Dentistry, Seoul National University) ;
  • Kim, Hong-Hee (Department of Cell and Developmental Biology, DRI, BK21 Program, School of Dentistry, Seoul National University) ;
  • Lee, Zang-Hee (Department of Cell and Developmental Biology, DRI, BK21 Program, School of Dentistry, Seoul National University)
  • Published : 2005.12.31

Abstract

Osteoclasts are multinucleated cells with bone resorbing activity and differentiated from hematopoietic cell lineages of monocyte/macrophages in the presence of receptor activator of NF-${\kappa}B$ ligand (RANKL) and M-CSF. However, the exact molecular mechanisms through which RANKL stimulates osteoclastogenesis remain to be elucidated. Here we report that activation of cAMP-response elementbinding protein (CREB) is not involved in osteoclastogenesis from osteoclast precursors in response to RANKL. RANKL induced CREB activation in osteoclast precursors. Using pharmacological inhibitors, we found that RANKL-induced CREB activation is dependent on p38 MAPK pathways. We also found that ectopic expressions of wild type and dominant negative forms of CREB in osteoclast precursors did not affect RANKL-induced osteoclast formation and bone resorbing activity. Furthermore, dominant negative forms of CREB did not alter the expression levels of osteoclast-specific marker genes. Taken together, these data suggest that CREB is dispensable for differentiation and resorbing activity of osteoclasts.

Keywords

References

  1. Ahn, S., Olive, M., Aggarwal, S., Krylov, D., Ginty, D.D. and Vinson, C.: A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-ependent transcription of c-fos. Mol. Cell. Biol. 18:967-977, 1998
  2. Anderson, D.M., Maraskovsky, E., Billingsley, W.L., Dougall, W.C., Tometsko, M.E., Roux, E.R., Teepe, M.C., DuBose, R.F., Cosman, D. and Galibert, L.A.: Homologue ofthe TNF receptor and its ligand enhance T-cell growth and dendriticcell function. Nature 390:175-195, 1997 https://doi.org/10.1038/36593
  3. Arias, J., Alberts, A.S., Brindle, P., Claret, F.X., Smeal, T., Karin, M., Feramisco, J. and Montmany, M.: Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370:226-228, 1994 https://doi.org/10.1038/370226a0
  4. Barton, H., Muthusamy, M., Chanyangam, C., Fischer, C., Cledenin, C. and Leiden, J. M.: Defective thymocyte proliferation and IL-2 production in transgenic mice expressing a dominant-negative form of CREB. Nature 379:81-85, 1996 https://doi.org/10.1038/379081a0
  5. Bernhard, M. and Marc, M.: Transcriptional regulation by the phosphorylation-dependent factor CREB. Nature Rev. 2:599-609, 2001 https://doi.org/10.1038/35085068
  6. Brindle, P., Linke, S. and Montminy, M.: Protein-kinase-Adependent activator in transcription factor CREB reveals new role for CREM repressors. Nature 364:821-824, 1993 https://doi.org/10.1038/364821a0
  7. Du, K. and Montminy, M.: CREB is a regulatory target for the protein kinase Akt/PKB. J. Biol. Chem. 273:32377-32379, 1998 https://doi.org/10.1074/jbc.273.49.32377
  8. Edwards, D.R.: Cell signaling and the control of gene transcription. Trends Pharmacol. Sci. 15:239-244, 1994 https://doi.org/10.1016/0165-6147(94)90318-2
  9. Gonzalez, G.A. and Montminy, M.R.: Cyclic AMP stimulates somatostatin genetranscription by phosphorylation of CREB at serine 133. Cell 59:675-680, 1989 https://doi.org/10.1016/0092-8674(89)90013-5
  10. Gonzalez, G.A., Yamamoto, K.K., Fischer, W.H., Karr, D., Menzel, P., Biggs, W., Vale, W.W. and Montminy, M.R.: A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature 337:749-752, 1989 https://doi.org/10.1038/337749a0
  11. Ha, H., Kwak, H.B., Lee, S.W., Jin, H.M. Kim, H.M., Kim, H.H. and Lee, Z.H.: Reactive oxygen species mediate RANK signaling in osteoclasts. Exp. Cell Res. 301:119-127, 2004 https://doi.org/10.1016/j.yexcr.2004.07.035
  12. Habener, J.F.: Cyclic AMP response element binding proteins: a cornucopia of transcription factors. Mol. Endocrinol. 4:1087-1094, 1990 https://doi.org/10.1210/mend-4-8-1087
  13. Hoeffler, J.P., Meyer, T.E., Yun, Y., Jameson, J.L. and Habener, J.F.: Cyclic AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA. Science 242:1430-1433, 1988 https://doi.org/10.1126/science.2974179
  14. Johnson, G.L. and Vaillancourt, R.R: Sequential protein kinase reactions controlling cell growth and differentiation. Curr. Opin. Cell Biol. 6:230-238, 1994 https://doi.org/10.1016/0955-0674(94)90141-4
  15. Karsenty, G. and Wagner, E.F.: Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2:389-406, 2002 https://doi.org/10.1016/S1534-5807(02)00157-0
  16. Kobayashi, K., Takahashi, N., Jimi, E., Udagawa, N., Takami, M., Kotake, S., Nakagawa, N., Kinosaki, M., Yamaguchi, K., Shima, N., Yasuda, H., Morinaga, T., Higashio, K., Martin, T.J. and Suda, T.: Tumor necrosis factor-$\alpha$ stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J. Exp. Med. 191:275-285, 2000 https://doi.org/10.1084/jem.191.2.275
  17. Kwok, R.P., Lundblad, Jr., Chrivia, J.C., Richards, J.P., Bachinger, H.P., Brennan, R.G., Roberts, S.G., Green, M.R. and Goodman, R.H.: Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370:223-226, 1994 https://doi.org/10.1038/370223a0
  18. Matsumoto, M., Kogawa, M., Wada, S., Takayanagi, H., Tsujimoto, M., Katayama, S., Hisatake, K. and Nogi, Y.: Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATcl and PU.1. J. Biol. Chem. 279:45969-45979, 2004 https://doi.org/10.1074/jbc.M408795200
  19. Mayr, B. and Montminy, M.: Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell. Biol. 2:599-609, 2001 https://doi.org/10.1038/35085068
  20. Muthusamy, N. and Leiden, J.M.: A protein kinase C-, ras-, and RSK2-dependent signal transduction pathway activates the cAMP-responsive element-binding protein transcription factor following T cell receptor engagement. J. Biol. Chem. 273:841-847, 1998 https://doi.org/10.1074/jbc.273.35.22841
  21. Reusch, J.E., Colton, L.A. and Klemm, D.J.: CREB activation induces adipogenesis in 3T3-Ll cells. Mol. Cell. Biol. 20:1008-1020. 2000 https://doi.org/10.1128/MCB.20.3.1008-1020.2000
  22. Rodan, G.A. and Martin, T.J.: Therapeutic approaches to bone diseases. Science 289:1508-1514, 2000 https://doi.org/10.1126/science.289.5484.1508
  23. Seger, R. and Krebs, E.G.: The MAPK signaling cascade. FASEB J 9:726-735, 1995
  24. Suda, T., Takahashi, N. and Martin, T.J.: Modulation of osteoclast differentiation. Endocr. Rev. 13:66-80, 1992 https://doi.org/10.1210/edrv-13-1-66
  25. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T. and Martin, T.J.: Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20:345-357, 1999 https://doi.org/10.1210/er.20.3.345
  26. Sun, P., Enslen, H., Myung, P.S. and Maurer, R.A.: Differential activation of CREB by $Ca^2^+$/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 8:2527-2539, 1994 https://doi.org/10.1101/gad.8.21.2527
  27. Tan, Y., Rouse J., Zhang A., Cariati, S., Cohen, P. and Comb, M.J.: FGF and stress regulate CREB and ATF-l via a pathway involving p38 MAP kinase and MAPKAP kinase2. EMBO J. 15:4629-4642, 1996
  28. Tanaka, S., Nakamura, K., Takahasi, N. and Suda, T.: Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol. Rev. 208:30-49, 2005 https://doi.org/10.1111/j.0105-2896.2005.00327.x
  29. Takahashi, N., Udagawa, N. and Suda, T.: A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun. 256:449-455, 1999 https://doi.org/10.1006/bbrc.1999.0252
  30. Teitelbaum, S.L. and Ross, F.P.: Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4:638-649, 2003 https://doi.org/10.1038/nrg1122
  31. Udagawa, N., Takahashi, N. and Akatsu, T.: Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc. Natl. Acad. Sci. USA 87:7260-7264, 1990 https://doi.org/10.1073/pnas.87.18.7260
  32. Woloshin, P., Walton, K., Rehfuss, R., Goodman, R. and Cone, R.: CREB activity is required for normal growth and differentiated phenotype in the FRTL5 thyroid follicular cell line. Mol Endocrinol 5:1725-1733, 1992 https://doi.org/10.1210/me.6.10.1725
  33. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S.I., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K., Udagawa, N., Takahashi, N. and Suda, T.: Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and identical to TRANCE-RANKL. Proc. Natl. Acad. Sci. USA 95:3579-3602, 1998 https://doi.org/10.1073/pnas.95.7.3597
  34. Zhang, W. and Liu, H.T.: MAPK signal pathway in the regulation of cell proliferation in mammalian cells. Cell Res. 12:9-18, 2002 https://doi.org/10.1038/sj.cr.7290105