Heterogeneous Oxidation of Liquid-phase TCE over $CoO_x/TiO_2$ Catalysts

액상 TCE 제거반응을 위한 $CoO_x/TiO_2$ 촉매

  • Kim, Moon-Hyeon (Environmental Technology Institute (ETI), Department of Architectural, Civil and Environmental Engineering, Daegu University) ;
  • Choo, Kwang-Ho (Department of Environmental Engineering, Kyungpook National University)
  • 김문현 (대구대학교 환경기술연구소, 건설환경공학부) ;
  • 추광호 (경북대학교 환경공학과)
  • Published : 2005.03.31

Abstract

Catalytic wet oxidation of ppm levels of trichloroethylene (TCE) in water has been conducted using $TiO_2$-supported cobalt oxides at a given temperature and weight hourly space velocity. 5% $CoO_x/TiO_2$ might be the most promising catalyst for the wet oxidation at $36^{\circ}C$ although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Characterization of the $CoO_x$ catalyst by acquiring XPS spectra of both fresh and used Co surfaces gave different surface spectral features of each $CoO_x$. Co $2p_{3/2}$ binding energy of Co species exposed predominantly onto the outermost surface of the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of $CoTiO_x$ such as $Co_2TiO_4$ and $CoTiO_3$. The spent catalyst possessed a 780.3 eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly $Co_3O_4$. XRD measurements indicated that the phase structure of Co species in 5% $CoO_x/TiO_2$ catalyst even before reaction is quite comparable to the diffraction lines of external $Co_3O_4$ standard. A model structure of $CoO_x$ present on titania surfaces would be $Co_3O_4$, encapsulated in thin-film $CoTiO_x$ species consisting of $Co_2TiO_4$ and $CoTiO_3$, which may be active for the decomposition of TCE in a flow of water.

불균일 $CoO_x/TiO_2$ 촉매가 충진된 연속 흐름식 고정층 반응기 내에서 ppm 수준으로 수중에 존재하는 trichloroethylene (TCE) 제거반응을 수행하였으며, 가장 우수한 반응활성을 갖는 촉매의 결정구조와 표면화학적 특성을 분석함으로써 반응시간에 따라 분해활성이 전이영역을 보이는 원인을 규명하고자 하였다. $36^{\circ}C$의 반응온도에서 모델반응의 내부확산저항은 없었으며, $TiO_2$ 표면에 흡착에 의한 액상 TCE 제거정도는 무시할 수 있었다. 5% $CoO_x/TiO_2$ 촉매는 본 대상반응에 대하여 가장 우수한 활성을 갖는 것으로 나타났으며, 반응시간의 경과정도에 따라 TCE 분해효율이 점진적으로 증가하여 안정화되는 전이영역의 존재를 확인할 수 있었다. 반응 전 5% $CoO_x$ 촉매에 대한 XRD 패턴에서 담지체로 사용된 $TiO_2$에 의한 피크들 외에 새로운 피크가 관찰되었고, 5시간 이상 동안 반응한 후에 건조된 촉매의 경우에도 반응 전 촉매의 XRD 피크와 매우 유사하였다. $Co_3O_4$의 XRD 패턴들과 대조한 결과, 5% $CoO_x$ 촉매상에서 Co 화합물에 의해 야기되는 XRD 피크들은 $Co_3O_4$에 의한 것임을 알 수 있었다. 반응물에 노출되지 않은 5% $CoO_x/TiO_2$ 촉매에 대한 XPS 측정은 797.1 eV에서 Co $2p_{1/2}$에 대한 주피크와 함께 781.3 eV에서 Co $2p_{3/2}$에 대한 주피크가 관찰되어졌다. 반응 후 촉매의 경우에는 Co $2p_{3/2}$ 및 Co $2p_{1/2}$의 binding energy들은 각각 780.3과 795.8 eV에서 나타났다. 반응 전 후 촉매상에서 Co $2p_{3/2}$의 binding energy 차이는 1.0 eV이고, Co $2p_{1/2}$의 binding energy 차이는 1.3 eV이다. 표준 $Co_3O_4$에 대한 XPS 측정결과, 반응 후 촉매상에 존재하는 $CoO_x$$Co_3O_4$로 존재하고, 반응 전의 경우에는 이와는 다른 chemical state를 보여주었다. XRD 및 XPS 결과를 바탕으로, 촉매표면에 존재하는 $Co_3O_4$의 외부표면이 $Co_2TiO_4$$CoTiO_3$ 같은 $CoTiO_x$로 encapsulation되어 있는 모델구조를 제안할 수 있고, 이는 반응시간의 함수로 나타나는 촉매활성에 있어서 전이영역의 존재를 잘 설명할 수 있을 뿐만 아니라, XRD와 XPS에서 얻어진 촉매의 물리화학적인 특성을 잘 반영할 수 있다.

Keywords

References

  1. Luck, F., 'A review of industrial catalytic wet air oxidation processes,' Catal. Today, 27, 195-202(1996) https://doi.org/10.1016/0920-5861(95)00187-5
  2. Mishra, V. S., Mahajani, V. V., and Joshi, J. B., 'Wet air oxidation,' Ind. Eng. Chem. Res., 34, 2-48(1995) https://doi.org/10.1021/ie00040a001
  3. Hamoudi, S., Sayari, A., Belkacemi, K., Bonnevot, L., and Larachi, F., 'Catalytic wet oxidation of phenol over $Pt_xAg_1-_xMnO_2/CeO_2$ catalysts,' Catal. Today, 62, 379-388(2000) https://doi.org/10.1016/S0920-5861(00)00439-9
  4. Qin, J., Zhang, Q., and Chuang, K. T., 'Catalytic wet oxidation of p-chlorophenol over supported noble metal catalysts,' Appl. Catal. B, 29, 115-123(2001) https://doi.org/10.1016/S0926-3373(00)00200-9
  5. Klinghoffer, A. A., Cerro, R. L., and Abraham, M. A., 'Catalytic wet oxidation of acetic acid using platinum on alumina monolith catalyst,' Catal. Today, 40, 59-71(1998) https://doi.org/10.1016/S0920-5861(97)00122-3
  6. Fortuny, A., Bengoa, C., Font, J., and Fabregat, A., 'Bimetallic catalysts for continuous catalytic wet air oxidation of phenol,' J. Hazard. Mater., 64, 181-193 (1999) and references therein https://doi.org/10.1016/S0304-3894(98)00245-3
  7. Pintar, A., Batista, J., and Levec, J., 'Catalytic denitrification: direct and indirect removal of nitrates from potable water,' Catal. Today, 66, 503-510(2001) https://doi.org/10.1016/S0920-5861(00)00622-2
  8. Pintar, A., and Batista, J., 'Catalytic hydrogenation of aqueous nitrate solutions in fixed-bed reactors,' Catal. Today, 53, 35 - 50(1999) https://doi.org/10.1016/S0920-5861(99)00101-7
  9. Pintar, A., Batista, J., and Levec, J., 'Integrated ion exchange/catalytic process for efficient removal of nitrates from drinking water,' Chem. Eng. Sci., 56, 1551-1559(2001) https://doi.org/10.1016/S0009-2509(00)00382-1
  10. Gallezot, P., Laurain, N., and Isnard, P., 'Catalytic wetair oxidation of carboxylic acids on carbon-supported platinum catalysts,' Appl. Catal. B, 9, L11-L17(1996). https://doi.org/10.1016/0926-3373(96)90070-3
  11. Cheng, S. F. and Wu, S. C., 'Feasibility of using metals to remediate water containing TCE,' Chemosphere, 43, 1023-1028(2001) https://doi.org/10.1016/S0045-6535(00)00263-0
  12. Cybulski, A. and Trawczynski, J., 'Catalytic wet air oxidation of phenol over platinum and ruthenium catalysts,' Appl. Catal., B, 47, 1-13(2004) https://doi.org/10.1016/S0926-3373(03)00327-8
  13. Kim, M. H. and Choo, K. H., 'Use of complex metal oxides for catalytic TCE oxidation,' Theor. Appl. Chem. Eng., 9, 1180-1183(2003)
  14. Kim, M. H. and Choo, K. H., 'Catalytic wet oxidation of TCE over supported metal oxides,' Theor. Appl. Chem. Eng., 10, 1038-1041(2004)
  15. Park, K. W., Choo, K. H., and Kim, M. H., 'Degradation of volatile organic compounds in water using a photocatalytic reactor with crossflow microfiltration membranes,' in Proceedings of IWA Asian Waterqual'03, Session 3Q3G14, IWA, Bangkok, Thailand, pp. 1-8(2003)
  16. Hamoudi, S., Larachi, F., and Sayari, A., 'Wet oxidation of phenolic solutions over heterogeneous catalysts: degradation profile and catalyst behavior,' J. Catal., 177, 247-258(1998) https://doi.org/10.1006/jcat.1998.2125
  17. Chen, H., Sayari, A., Adnot, A., and Larachi, F., 'Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation,' Appl. Catal. B, 32, 195 -204(2001) https://doi.org/10.1016/S0926-3373(01)00136-9
  18. Kim, M. H., Ebner, J. R., Friedman, R. M., and Vannice, M. A., 'Determination of metal dispersion and surface composition in supported Cu-Pt catalysts,' J. Catal., 208, 381-392(2002) https://doi.org/10.1006/jcat.2002.3569
  19. Brik, Y., Kacimi, M., Ziyad, M., and Bozon-Verduraz, F., 'Titania-supported cobalt and cobalt-phosphorus catalysts: characterization and performances in ethane oxidative dehydrogenation,' J. Catal., 202, 118 -128(2001) https://doi.org/10.1006/jcat.2001.3262
  20. Vo B, M., Borgmann, D., and Wedler, G., 'Characterization of alumina, silica, and titania supported cobalt catalysts,' J. Catal., 212, 10-21(2002) https://doi.org/10.1006/jcat.2002.3739
  21. Pruden, A. L. and Ollis, D. F., 'Photoassisted heterogeneous catalysis: the degradation of trichloroethylene in water,' J. Catal., 82, 404-417(1983) https://doi.org/10.1016/0021-9517(83)90207-5
  22. Glaze, W., Kenneke, J. F., and Ferry, J. L., 'Chlorinated byproducts from the $TiO_2$-mediated photodegradation of trichloroethylene and tetrachloroethylene in water,' Environ. Sci. Technol., 27, 177-184(1993) https://doi.org/10.1021/es00038a021
  23. Masende, Z. P. G., Kuster, B. F. M., Ptasinski, K. J., Janssen, F. J. J. K., Katima, J. H. Y, and Schouten, J. C., 'Platinum catalyzed wet oxidation of phenol in a stirred slurry reactor: a practical operation window,' Appl. Catal., B, 41, 247-267(2003) https://doi.org/10.1016/S0926-3373(02)00164-9
  24. Pintar, A., 'Catalytic processes for the purification of drinking water and industrial effluents,' Catal. Today, 77, 451-465(2003) https://doi.org/10.1016/S0920-5861(02)00385-1
  25. Frydman, A., Castner, D. G., Schmal, M., and Campbell, C. T., 'Particle and phase thicknesses from XPS analysis of supported bimetallic catalysts: calcined Co-Rh/$Nb_2O_5$,' J. Catal., 152, 164-178(1995) https://doi.org/10.1006/jcat.1995.1070
  26. Ho, S. W., Cruz, J. M., Houalla, M., and Hercules, D. M., 'The structure and activity of titania supported cobalt catalysts,' J. Catal., 135, 173-185(1992) https://doi.org/10.1016/0021-9517(92)90278-P