Mixture Toxicity Test of Ten Major Chemicals Using Daphnia magna by Response Curve Method

독성 반응곡선을 이용한 수계 주요 오염물질의 혼합독성평가

  • Ra, Jin-Sung (Gwangju Institute of Science and Technology, Department of Environmental Science and Engineering) ;
  • Kim, Ki-Tae (Gwangju Institute of Science and Technology, Department of Environmental Science and Engineering) ;
  • Kim, Sang-Don (Gwangju Institute of Science and Technology, Department of Environmental Science and Engineering) ;
  • Han, Sang-Guk (Division of Ocean System Engineering, Mokpo National Maritime University) ;
  • Chang, Nam-Ik (Yeongsan-river Environmental Research Laboratory) ;
  • Kim, Yong-Seok (Yeongsan-river Environmental Research Laboratory)
  • 나진성 (광주과학기술원 환경공학과) ;
  • 김기태 (광주과학기술원 환경공학과) ;
  • 김상돈 (광주과학기술원 환경공학과) ;
  • 한상국 (목포해양대학교 해양시스템 공학부) ;
  • 장남익 (영산강 물환경연구소) ;
  • 김용석 (영산강 물환경연구소)
  • Published : 2005.01.31

Abstract

Toxicity tests were performed to evaluate the feasibility of application with prediction models to 10 mixture chemicals (chloroneb, butylbenzylphthalate, pendimethaline, di-n-butylphthalate, di-iso-butylphthalate, diazinon, isofenphos, 2-chlorophenol, 2,4,6-trichlorophenol and p-octylphenol) detected in effluents from wastewater treatment plants (WWTPs). Ten chemicals were selected in the basis of their toxicities to Daphnia magna and the concentrations in effluents measured by GC/MS. Three models including concentration addition (CA), independent action (IA) and effect summation (ES) were employed for the comparison of the predicted and the observed mortality of D. magna exposed to 10 mixture chemicals for 48 hours. With a comparative study it was ineffective to predict the mortality through the CA and the ES prediction model, while the IA prediction model showed a high correlation($r^2\;=\;0.85$). Moreover, the ES model over-estimated the toxicity observed by bioassay experiments about five-fold. Consequently, IA model is a reasonable tool to predict the mixture toxicity of the discharging water from WWTPs.

기존의 방류수 모니터링에서는 개별 오염물질들의 농도를 기준으로 독성을 평가하였다. 그러나 많은 연구자들에 의해서 오염물질들이 공존하는 상황에서 나타나는 독성은 그들 간의 상호작용을 통해서 혼합독성의 형태로 나타난다고 보고되고 있다. 본 연구에서는 GC/MS 분석을 통해 방류수 중에 존재하는 주요 독성 기여 오염 물질들을 분석하고, Independent Action(IA), Concentration Addition(CA), Effect Summation(ES) 모델을 사용하여 방류수의 혼합독성을 상호 비교 평가하였다. GC/MS로 분석된 오염물질을 대상으로 D. magna 기준 독성 평가를 실시하였고, 10가지의 주요 독성 기여 오염물질을 선별하였다. Chloroneb, butylbenzylphthalate, pendimethaline, di-n-butylphthalate, di-iso-butylphthalate, diazinon, isofenphos, 2-chlorophenol, 2,4,6-trichlorophenol 과 p-octylphenol을 주요 오염물질로 선정하여 혼합독성 평가를 실시하였다. 혼합독성 평가 결과는 IA 예측모델과 매우 높은 상관성($r^2\;=\;0.8475$)을 나타내었다. ES와 CA 모델은 IA 모델과 비교하여 혼합독성 결과와 매우 낮은 상관성을 나타내었으며, 특히 ES는 실측값을 5배나 과도하게 예측하였다. 이러한 결과를 통해서 전남지역 방류수에 존재하는 주요 오염물질들의 혼합독성은 IA 모델을 통해 예측이 가능할 것으로 판단된다.

Keywords

References

  1. Victor, D. V., Vallerie, C, Carol, D., Howard, C. B., Linda, A. D., David, E. H., 'Application of Whole Effluent Toxicity Test Procedures to Ambient Water Quality Assessment,' Environ. Toxicol. Chem., 19(1), 42-62(2000) https://doi.org/10.1897/1551-5028(2000)019<0042:AOWETT>2.3.CO;2
  2. Steven, W. G., Kari, L. F., Eric, T. K., Greg, S., Lou, R., and Dawn, A. K., 'Modification to the Algal Growth Inhibition Test for Use As a regulatory Assay,' Environ. Toxicol. Chem., 19(1), 36-41(2000) https://doi.org/10.1897/1551-5028(2000)019<0036:MTTAGI>2.3.CO;2
  3. Howard, C. B., Rick, K., James, R. E., Ann-Maree, M., Peta, H., Louise, T., and Adam, L., Whole Effluent Toxicity of Sewage Treatment Plants in the HAWKESBURY-NEPEAN WATERSHED, NEW SOUTH WALES, AUSTRALIA, to Ceriodaphnia dubia and Selenastrum Capricornutum, Environ. Toxicol. Chem., 19(1), 72-81(2000) https://doi.org/10.1897/1551-5028(2000)019<0072:WETOST>2.3.CO;2
  4. Kenneth, E. B., Sylvia, H. W., Cathy, M., and Kevin, A. T., 'Joint Acute toxicity of diazinon and copper to ceriodaphnia dubia,' Environ. Toxicol. Chem., 22(7), 1562-1567(2003) https://doi.org/10.1897/1551-5028(2003)22<1562:JATODA>2.0.CO;2
  5. Michael, C, 'Mixtrue toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid,' Ecotox. Environ. Safe., in press
  6. Roberta, G., 'Ecotoxicological and chemical evaluation of phenolic compounds in industrial effluents,' Chemosphere, 44, 1737-1747(2001) https://doi.org/10.1016/S0045-6535(00)00562-2
  7. Faust, M., Altenburger, R., Backhaus, T., Blanck, H., Boedeker, W., Gramatica, P., Hamer, V., Scholze, M., Vighi, M., Grimme, L. H., Predicting the joint algal toxicity of multi-componunt s-trizine mixtures at low-effect concentrations of individual toxiciants, Aquat. Toxicol., 56, 13-32(2001) https://doi.org/10.1016/S0166-445X(01)00187-4
  8. Faust, M., Altenburger, R., Backhaus, T., Blanck, H., Boedeker, W., Gramatica, P., Hamer, V., Scholze, M., Vighi, M., Grimme, L. H., Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action, Aquat. Toxicol., 63, pp. 43-63(2003) https://doi.org/10.1016/S0166-445X(02)00133-9
  9. Method for measuring the acute toxicity of effluents and receiving waters to freshwater and marin organism, EPA/600/4-90/027F(1993)
  10. Cowgill, U. M. and Milazzo, D. P., The Sensitivity of Ceriodaphnia dubia and Daphnia magna to Seven Chemicals Utilizing the Three-Brood Test, Arch. Environ. Contam. Toxicol., 20(2), 211-217(1991) https://doi.org/10.1007/BF01055906
  11. Backhaus, T., Scholze, M., Grimme, L. H., The single substance and mixture toxicity of quinolones to the bio-luminescent bacterium Vibrio fischeri, Aquat. Toxicol, 49, 49-61(2000) https://doi.org/10.1016/S0166-445X(99)00069-7
  12. U.S. Environmental Protection Agency, ECOTOX database, http://www.epa.gov/ecotox