DOI QR코드

DOI QR Code

Analysis on Cloud-Originated Errors of MODIS Leaf Area Index and Primary Production Images: Effect of Monsoon Climate in Korea

MODIS 엽면적지수 및 일차생산성 영상의 구름 영향 오차 분석: 우리나라 몬순기후의 영향

  • Kang, Sin-Kyu (Department of Environmental Science, Kangwon National University)
  • 강신규 (강원대학교 자연대학 환경과학과)
  • Published : 2005.08.30

Abstract

MODIS (Moderate Resolution Image Spectrometer) is a core satellite sensor boarded on Terra and Aqua satellite of NASA Earth Observing System since 1999 and 2001, respectively. MODIS LAI, FPAR, and GPP provide useful means to monitor plant phonology and material cycles in terrestrial ecosystems. In this study, LAI, FPAR, and GPP in Korea were evaluated and errors associated with cloud contamination on MODIS pixels were eliminated for years $2001\sim2003$. Three-year means of cloud-corrected annual GPP were 1836, 1369, and 1460g C $m^{-2}y^{-1}$ for evergreen needleleaf forest, deciduous broadleaf forest, and mixed forest, respectively. The cloud-originated errors were 8.5%, 13.1%, and 8.4% for FPAR, LAI, and GPP, respectively. Summertime errors from June to September explained by 78% of the annual accumulative errors in GPP. This study indicates that cloud-originated errors should be mitigated for practical use of MODIS vegetation products to monitor seasonal and annual changes in plant phonology and vegetation production in Korea.

미국항공우주국은 지구 관측 시스템(EOS) 프로그램의 일환으로 1999년에 Terra를 2001년에 Aqua 인공위성을 발사하였다. MODIS는 EOS의 핵심 원격 탐사 센서로서 육상 생태계의 식물계절학과 물질 순환 모니터링을 위한 8일 단위의 엽면적지수(LAI), 유효 광합성 광량 중 식생에 흡수된 비율(FPAR), 총 일차 생산성(GPP) 영상을 제공하고 있다. 본 연구에서 우리나라를 대상으로 식생형에 따른 $2001\sim2003$년 간의 MODIS LAI, FPAR, GPP를 분석하였으며, 구름 영향에 의한 각 영상의 오차를 평가하였다. 분석 결과 연간 GPP는 침엽수림 1,836, 활엽수림 1,369, 혼효림 1460g C $m^{-2}y^{-1}$로 나타났으며, 각 변수에서 구름에 의해 야기된 오차는 FPAR 8.5, LAI 13.1, GPP 8.4%에 달하는 것으로 분석되었다. 특히 GPP의 경우 6월에서 9월까지의 오차가 연간 오차의 78%를 설명하는 것으로 나타나, 몬순기후가 MODIS 영상의 오차에 큰 영향을 미침을 알 수 있었다. 본 연구는 향후 MODIS식생 관련 영상들이 우리나라의 식물계절학과 일파 생산성 모니터링에 유용하게 사용될 수 있으며, 이들 영상을 사용하기에 앞서 구름 영향 오차를 감쇄하는 영상의 전처리 과정을 수행할 필요가 있음을 보여주었다.

Keywords

References

  1. 강신규, 김영일, 김영진. 2005. MODIS 총일차생산성 산출물의 오차 요인 분석: 입력기상자료의 영향. 한국농림기상학회지 7(2): 171-183
  2. 김준. 2005. KoFlux 2004 Synthesis: 한국 생태계의 탄소와 물 순환의 이해를 통한 기후변화협약대응. 한국농림기상학회지 7(1): 1-3
  3. Cihlar, J., R. Latifovic, J. Chen and Z. Li. 1999. Testing near-real time detection of contaminated pixels in AVHRR composites. Canadian Journal of Remote Sensing, 25, 160-170 https://doi.org/10.1080/07038992.1999.10874714
  4. Cohen, W.B. and C.O. Justice. 1999. Validating MODIS terrestrial ecology products: linking in situ and satellite measurements. Remote Sensing of Environment 70: 1-4 https://doi.org/10.1016/S0034-4257(99)00053-X
  5. Heinsch, F.A., M. Reeves, C.F. Bowker, P. Votava, S. Kang, C. Milesi, M. Zhao, J. Glassy, W.M. Jolly, J.S. Kimball, R.R. Nemani and S.W. Running. 2003. User's guide: GPP and NPP (MOD17A2/A3) products, NASA MODIS Land Algorithm. http://www.forestry.umt.edu/ntsg/
  6. Hwang, T.H. 2004. Spatial analysis of carbon and water processes with RHESSys model in the Gwangneung experimental forest. A thesis in Master Degree, Seoul National University, Seoul, Korea
  7. Kang, S., S.W. Running, J. Lim, M. Zhao, C. Park and R. Loehman. 2003. A MODIS-based climatological phenology model for detecting onset of growing seasons in temperate mixed forests in Korea. Remote Sensing of Environment 86: 232-242 https://doi.org/10.1016/S0034-4257(03)00103-2
  8. Kang, S., D. Lee and J.S. Kimball. 2004. The effects of spatial aggregation of complex topography on hydro-ecological process simulations within a rugged forest landscape: Development and application of a satellite-based topoclimatic model. Canadian Journal of Forest Research 34(3): 519-530 https://doi.org/10.1139/x03-213
  9. Kang, S., S.W. Running, M. Zhao, J.S. Kimball and J. Glassy. 2005. Improving continuity of MODIS terrestrial photosynthesis products using an interpolation scheme for cloudy pixels. International Journal of Remote Sensing 26(8):1659-1676 https://doi.org/10.1080/01431160512331326693
  10. Kim, S. and K. Lee. 2003. Local validation of MODIS Global Leaf Area Index (LAI) product over temperate forest. Korean Journal of Remote Sensing 19:1-9
  11. Lee, K., S. Kim, Y. Park and K. Jang. 2003. Generation of forest leaf area index (LAI) map using multispectral satellite data and field measurements. Korean Journal of Remote Sensing 19:371-380
  12. Morisette, J.T., J.L. Privette and C.O. Justice. 2002. A framework for the validation of MODIS Land products. Remote Sensing of Environment 83: 77-96 https://doi.org/10.1016/S0034-4257(02)00088-3
  13. Myneni, R.B., S. Hoffman, Y. Knyazikhin, J.L. Privette, J.Glassy, Y. Tian, Y. Wang, X. Song, Y. Zhang, G.R. Smith, A. Lotsch, M. Friedl, J.T. Morisette, P. Votava, R.R. Nemani and S.W. Running. 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment 83: 214-231 https://doi.org/10.1016/S0034-4257(02)00074-3
  14. Nemani, R.R., C.D. Keeling, H. Hashimoto, W.M. Jolly, S.C. Piper, C.J. Tucker, R.B. Myneni and S.W. Running. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300: 1560-1563 https://doi.org/10.1126/science.1082750
  15. Prince, S.D. and S.N. Goward. 1995. Global primary production: A remote sensing approach. Journal of Biogeography 22: 815-835 https://doi.org/10.2307/2845983
  16. Running, S.W., C.O. Justice, V. Salomonson, D. Hall, J. Barker, Y.J. Kaufmann, A.H. Strahler, A.R. Huete, J.P. Muller, J.P., V. Vanderbilt, Z.M. Wan, P. Teillet and D. Carneggie. 1994. Terrestrial remote sensing science and algorithms planned for EOS/MODIS. International Journal of Remote Sensing 15: 3587-3620 https://doi.org/10.1080/01431169408954346
  17. Running, S.W., D. Baldocchi, D. Turner, S.T. Gower, P. Bakwin, and K. Hibbard. 1999. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sensing of Environment 70: 108-127 https://doi.org/10.1016/S0034-4257(99)00061-9
  18. Turner, D.P., W. Ritts, W.B. Cohen, S.T. Gower, M. Zhao and S.W. Running. 2003. Scaling gross primary production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation. Remote Sensing of Environment 88: 256-270 https://doi.org/10.1016/j.rse.2003.06.005
  19. White, M.A., P.E. Thornton and S.W. Running. 1997. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles 11: 217-234 https://doi.org/10.1029/97GB00330
  20. Zhao, M., F.A. Heinsch, R.R. Nemani and S.W. Running. 2005. Improvements of the MODIS terrestrial gross and net primary production global dataset. Remote Sensing of Environment 95: 164-176 https://doi.org/10.1016/j.rse.2004.12.011