Correlations Between Pore Structure of Activated Carbon and Adsorption Characteristics of Acetone Vapor

활성탄의 세공구조와 Acetone Vapor 흡착특성의 상관관계

  • Lee, Song-Woo (Department of Chemical Engineering, Pusan National University) ;
  • Bae, Sang-Kyu (Department of Chemical Engineering, Pusan National University) ;
  • Kwon, Jun-Ho (Department of Chemical Engineering, Pusan National University) ;
  • Na, Young-Soo (Segye Chem.Co., Ltd.) ;
  • An, Chang-Doeuk (Segye Chem.Co., Ltd.) ;
  • Yoon, Young-Sam (Nakdong River Water Environment Laboratory, National Institute of Environmental Research) ;
  • Song, Seung-Koo (Department of Chemical Engineering, Pusan National University)
  • Published : 2005.06.30

Abstract

This study is to investigate the correlation between pore structures of activated carbons and adsorption characteristics of acetone vapor using the dynamic adsorption method. The experimental results showed that the breakthrough time of ACT activated carbon made by Takeda was the longest, because ACT has more micropores below pore diametr $10{\AA}$ than the compared activated carbons. The equilibrium adsorption capacity had direct correlation to the breakthrough time. The relation between BET specific surface area and the equilibrium adsorption capacity was hard to say linear. Therefore, it was difficult to estimate the adsorption ability of activated carbons only by BET specific surface area. The correlation factor between the cumulative surface area and the equilibrium adsorption capacity decreased with enlarging the range of pore size, and there was the highest correlation factor in the range of below $10{\AA}$.

연속식 흡착장치를 사용하여 활성탄의 세공구조와 아세톤 중기의 흡착특성과의 상관관계를 고찰하였다. 실험에서 비교한 활성탄 중 젠체 세공구조에서 직경 $10{\AA}$ 이하의 세공이 가장 많이 발달한 Takeda의 ACT 활성탄이 가장 긴 파과시간을 가지고 있었다. 평형흡착량은 파과시간에는 비례했지만, BET 비표면적에는 비례한다고 볼 수 없었기 때문에 BET 비표면적 만으로 흡착능을 평가하는 것은 어려웠다. 누적표면적과 평형흡착량과의 상관관계는 $10{\AA}$ 이하에서 가장 컸고, 세공범위가 클수록 감소했다.

Keywords

References

  1. Journal of Loss Prevention in the Process Industries v.13 Removal of volatile organic compound from polluted air Khan, F.I.;Ghoshal, A.K.
  2. 대한환경공학회지 v.23 no.7 국내 무연탄으로 제조한 활성탄과 상업용 활성탄의 세공특성 분석 이송우;문장천;이창한;류동춘;최동훈;류병순;송승구
  3. Carbon v.39 Effect of pore structure and temperature on VOC adsorption on activated carbon Chiang, Y.;Chiang, P.;Huang, C.
  4. 대한환경공학회지 v.23 no.12 고정 흡착층에서 벤젠의 흡착특성 김한수;박영성;민병무
  5. 대한환경공학회지 v.25 no.8 활성탄으로 충전된 고정흡착층에서 벤젠과 톨루엔의 이성분 흡착특성 김한수;박영성
  6. J. Hazard. Mater. v.B98 Break-through of methylketone and benzene vapors in activated carbon fiber beds Huang, Z.;Kang, F.;Liang, K.;Hao, J.
  7. J. Kor. Soc. Environ. Anal. v.7 no.1 A study on thermodynamic adsorption behaviors of activated carbon fibers for volatile organic compounds Lee, K.H.;Lee, S.H.;Kim, S.D.
  8. 한국재료학회지 v.9 no.4 탄소섬유의 KOH 활성화와 휘발성유기화합물(VOC)의 흡착특성 장진석;김인기;임굉;조성준
  9. J. Am. Chem. Soc. v.73 The determination of pore volume and area distributions in porous substances : I. Computation from nitrogen isotherm Barrett, E.P.;Joyner, L.S.;Halenda, P.P.
  10. ASAP 2010 Manual, Appendix C Micromeritics
  11. Principles of Adsorption and Adsorption Process Ruthven, D.M.
  12. Engineering Control of Air Pollution: Air Pollution-IV Stern, A.C.
  13. Environ. Sci. Technol. v.12 Prediction method for adsorption capacities of commercial activated carbon in removal of organic vapors Urono, K.S.;Omori, S.;Yamamoto, E.