Molecular Detection of Catabolic Genes for Polycyclic Aromatic Hydrocarbons in the Reed Rhizosphere of Sunchon Bay

  • Kahng Hyung-Yeel (Department of Environmental Education, Sunchon National University) ;
  • Oh Kye-Heon (Department of Life Science, Soonchunhyang University)
  • 발행 : 2005.12.01

초록

This study focused on detecting catabolic genes for polycyclic aromatic hydrocarbons (PAHs) distributed in the reed rhizosphere of Sunchon Bay, Korea. These marsh and mud environments were severely affected by human activities, including agriculture and fisheries. Our previous study on microbial roles in natural decontamination displayed the possibility that PAH-degrading bacteria, such as Achromobacter sp., Alcaligenes sp., Burkholderia sp. and Pseudomonas sp. play an important decontamination role in a reed rhizosphere. In order to gain further fundamental knowledge on the natural decontamination process, catabolic genes for PAH metabolism were investigated through PCR amplification of dioxygenase genes using soil genomic DNA and sequencing. Comparative analysis of predicted amino acid sequences from 50 randomly selected dioxygenase clones capable of hydroxylating inactivated aromatic nuclei indicated that these were divided into three groups, two of which might be originated from PAH-degrading bacteria. Amino acid sequences of each dioxygenase clone were a part of the genes encoding enzymes for initial catabolism of naphthalene, phenanthrene, or pyrene that might be originated from bacteria in the reed rhizosphere of Sunchon Bay.

키워드

참고문헌

  1. Batie, C.J., E. Lahaie, and D.P. Ballou. 1987. Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia. J. Biol. Chem. 262, 1510-1518
  2. Begg, J.S., R.L. Lavigne, and P.L. Veneman. 2001. Reed beds: constructed wetlands for municipal wastewater treatment plant sludge dewatering. Water Sci. Technol. 44, 393-398
  3. Cerniglia, C.E., D.T. Gibson, and R.H. Dodge. 1994. Metabolism of benz[a]anthracene by the filamentous fungus Cumminghamella elegans. Appl. Environ. Microbiol. 60, 3931-3938.
  4. Cigolini, J.F. 2000. Molecular analysis of polycyclic aromatic hydrocarbon degradation by Mycobacterium sp. strain PYO1. Ph. D thesis, Rutgers, The State University of New Jersey
  5. Cooper, P.F., J.A. Hobson, and S. Jowes. 1989. Sewage treatment by reed bed systems. J. Ins. Wat. Environ. Man. 3, 60-74 https://doi.org/10.1111/j.1747-6593.1989.tb01367.x
  6. Daane, L.L., I. Harjono, G.J. Zylstra, and M.M. Haggblom. 2001. Isolation and characterization of polycyclic aromatic hydrocarbon- degrading bacteria associated with the rhizosphere of salt marsh plants. Appl. Environ. Microbiol. 67, 2683-2691 https://doi.org/10.1128/AEM.67.6.2683-2691.2001
  7. Farrell, R.E., C.M. Frick, and J.J. Germida. 2000. PhytoPet$\copyright$ : A database of plants that play a role in the phytoremediation of petroleum hydrocarbons. Proceedings of the Second Phytoremediation Technical Seminar, Environment Canada, Ottawa, ON. pp. 29-40
  8. Geary, P.J., F. Saboowalla, D.S. Patil, and R. Commack. 1984. An investigation of the iron-sulpur proteins of benzene dioxygenase from Pseudomonas putida by electron-spin-resonance spectroscopy. Biochem. J. 217, 667-673 https://doi.org/10.1042/bj2170667
  9. Gersberg, R.M., B.V. Elkins, S.R. Lyon, and C.R. Goldman. 1986. Role of aquatic plants in wastewater treatment by artificial wetlants. Water Res. 20, 363-368 https://doi.org/10.1016/0043-1354(86)90085-0
  10. Gurbiel, R.J., C.J. Batie, M. Sivaraja, A.E. True, and J.A. Fee. 1989. Electron nuclear double resonance spectroscopy of N-15 enriched phthalate dioxygenase from Pseudomonas cepacia proves that 2 histidines are coordinated to the [2Fe-2S] Riesketype clusters. Biochemistry 28, 4861-4871. https://doi.org/10.1021/bi00437a051
  11. Han, M.-J., H.-T. Choi, and H.-G. Song. 2004. Degradation of phenanthrene by Trametes versicolor and its laccase. J. Microbiol. 42, 94-98
  12. Kahng, H.-Y., K. Nam, J.J. Kukor, B.-J. Yoon, D.-H. Lee, D.-C. Oh, S.-K. Kam, and K.-H. Oh. 2002. PAH utilization by Pseudomonas rhodesiae KK1 isolated from a former manufactured-gas plant site. Appl. Microbiol. Biotechnol. 30, 475-480
  13. Kern, J. and C. Idler. 1999. Treatment of domestic and agricultural wastewater by reed bed systems. Ecol. Eng. 12, 13-25 https://doi.org/10.1016/S0925-8574(98)00051-2
  14. Kim, S.-H., S.-M. Kang, K.-H. Oh, S.-I. Kim, B.-J. Yoon, and H.-Y. Kahng. 2005. Characterization of PAH-degrading bacteria from soils of the reed rhizosphere of Sunchon Bay using PAH consortia. Kor. J. Microbiol. 41, 208-215
  15. Laurie, A.D. and G. Lloyd-Jones. 1999. The phn genes of Burkholderia sp. Strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J. Bacteriol. 181, 531-540
  16. Lee, M.-S., S.-K Hong, D.-H. Lee, C.-K. Kim, and K.-S. Bae. 2001. Bacterial diversity in the mud flat of Sunchon Bay, Chunnam province, by 16S rRNA gene analysis. Kor. J. Microbiol. 37, 137-144
  17. Mason, J.R. 1988. Oxygenase catalyzed hydroxylation of aromatic compounds: simple chemistry by complex enzymes. Int. Ind. Biotechnol. 46, 277-305
  18. Mason, J.R. and R. Commack. 1992. The electron transport proteins of hydroxylating bacterial dioxygenase. Annu. Rev. Microbiol. 46, 277-305 https://doi.org/10.1146/annurev.mi.46.100192.001425
  19. Menn, F.M., B.M. Applegate, and G.S. Sayler. 1993. NAH plasmidmediated catabolism of anthracene and phenanthrene to naphthoic acids. Appl. Environ. Microbiol. 59, 1938-1942
  20. Obarska-Pempkowiak, H. and K. Klimkowska. 1999. Distribution of nutrients and heavy metals in a constructed wetland system. Chemosphere 39, 303-312 https://doi.org/10.1016/S0045-6535(99)00111-3
  21. Reiske, J.S., R.E. Hanse, and W.S. Zaugg. 1964. Studies on the electron transfer system. LVIII. Properties of a new oxidationreduction component of the respiratory chain as studied by electron paramagnetic resonance pectroscopy. J. Biol. Chem. 239, 3017-3021
  22. Saito, A., T. Iwabuchi, and S. Harayama. 2000. A novel phenanthrene dioxygenase from Nocardioides sp. strain KP7: expression in Escherichia coli. J. Bacteriol. 182, 2134-2141 https://doi.org/10.1128/JB.182.8.2134-2141.2000
  23. Sanseverino, J.B., B.M. Applegate, J.M.H. King, and G.S. Sayler. 1993. Plasmid-mediated ineralization of naphthalene, phenanthrene, and anthracene. Appl. Environ. Microbiol. 59, 1931- 1937
  24. Simon, M.J., T.D. Osslund, R. Saunders, B.D. Ensley, S. Suggs, A. Harcourt, W. Suen, D. Cruden, D.T. Gibson, and G.J. Zylstra. 1993. Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127, 31-37 https://doi.org/10.1016/0378-1119(93)90613-8
  25. Van Agteren, M.H., S. Keuning, and D.B. Janssen. 1998. Handbook on biodegradation and biological treatment of harzardous organic compounds. Kluwer Academic Publishers
  26. Wang, R.F., A.A. Khan, W.W. Cao, D.R. Doerge, D. Wennerstrom, and C.E. Cerniglia. 2001. Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl. Environ. Microbiol. 67, 3577-3585 https://doi.org/10.1128/AEM.67.8.3577-3585.2001
  27. Weissenfels W.D., M. Beyer, and J. Klein. 1990. Degradation of phenanthrene, fluorene, and fluoranthene by pure bacterial cultures. Appl. Microbiol. Biotechnol. 32, 479-484 https://doi.org/10.1007/BF00903787
  28. Yang, Y., R.F. Chen, and M.P. Shiaris. 1994. Metabolism of naphthalene, fluorene, and phenanthrene:preliminary characterization of a cloned gene cluster from Pseudomonas putida NCIB 9816. J. Bacteriol. 176, 2158-2164 https://doi.org/10.1128/jb.176.8.2158-2164.1994
  29. Yun, S.-H., C.-Y. Yun, and S.-I. Kim. 2004. Characterization of protocatechuate 4,5-dioxygenase induced from p-hydroxybenzoate-cultured Pseudomonas sp. K82. J. Microbiol. 42, 152-155
  30. Zylstra, G.J., X.P. Wang, E. Kim, and V.A. Didolkar. 1994. Cloning and analysis of the genes for polycyclic aromatic hydrocarbon degradation. Ann. NY Acad. Sci. 721, 386-398 https://doi.org/10.1111/j.1749-6632.1994.tb47410.x