Genomics Reveals Traces of Fungal Phenylpropanoid-flavonoid Metabolic Pathway in the Filamentous Fungus Aspergillus oryzae

  • 발행 : 2005.12.01

초록

Fungal secondary metabolites constitute a wide variety of compounds which either playa vital role in agricultural, pharmaceutical and industrial contexts, or have devastating effects on agriculture, animal and human affairs by virtue of their toxigenicity. Owing to their beneficial and deleterious characteristics, these complex compounds and the genes responsible for their synthesis have been the subjects of extensive investigation by microbiologists and pharmacologists. A majority of the fungal secondary metabolic genes are classified as type I polyketide synthases (PKS) which are often clustered with other secondary metabolism related genes. In this review we discuss on the significance of our recent discovery of chalcone synthase (CHS) genes belonging to the type III PKS superfamily in an industrially important fungus, Aspergillus oryzae. CHS genes are known to playa vital role in the biosynthesis of flavonoids in plants. A comparative genome analyses revealed the unique character of A. oryzae with four CHS-like genes (csyA, csyB, csyC and csyD) amongst other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus) which contained none of the CHS-like genes. Some other fungi such as Neurospora crassa, Fusarium graminearum, Magnaporthe grisea, Podospora anserina and Phanerochaete chrysosporium also contained putative type III PKSs, with a phylogenic distinction from bacteria and plants. The enzymatically active nature of these newly discovered homologues is expected owing to the conservation in the catalytic residues across the different species of plants and fungi, and also by the fact that a majority of these genes (csyA, csyB and csyD) were expressed in A. oryzae. While this finding brings filamentous fungi closer to plants and bacteria which until recently were the only ones considered to possess the type III PKSs, the presence of putative genes encoding other principal enzymes involved in the phenylpropanoid and flavonoid biosynthesis (viz., phenylalanine ammonia-lyase, cinnamic acid hydroxylase and p-coumarate CoA ligase) in the A. oryzae genome undoubtedly prove the extent of its metabolic diversity. Since many of these genes have not been identified earlier, knowledge on their corresponding products or activities remain undeciphered. In future, it is anticipated that these enzymes may be reasonable targets for metabolic engineering in fungi to produce agriculturally and nutritionally important metabolites.

키워드

참고문헌

  1. Adrio, J.L. and A.L. Demain. 2003. Fungal biotechnology. Int. Microbiol. 6, 191-199 https://doi.org/10.1007/s10123-003-0133-0
  2. Austin, M.B. and J.P. Noel. 2003. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79-110 https://doi.org/10.1039/b100917f
  3. Boudet, A.-M. 1998. A new view of lignification. Trends in Plant Sci. 3, 67-71 https://doi.org/10.1016/S1360-1385(97)01176-X
  4. Calvo, A.M., R.A. Wilson, J.W. Bok, and N.P. Keller. 2002. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 66, 447-459 https://doi.org/10.1128/MMBR.66.3.447-459.2002
  5. Dixon, R.A. and N.L. Paiva. 1995. Stress-Induced Phenylpropanoid Metabolism. Plant Cell. 7, 1085-1097 https://doi.org/10.1105/tpc.7.7.1085
  6. Choquer, M., K.L. Dekkers, H.Q. Chen, L. Cao, P.P. Ueng, M.E. Daub, and K.R. Chung. 2005. The CTB1 gene encoding a fungal polyketide synthase is required for cercosporin biosynthesis and fungal virulence of Cercospora nicotianae. Mol. Plant Microbe. Interact. 18, 468-476 https://doi.org/10.1094/MPMI-18-0468
  7. Christensen, A.B., P.L. Gregersen, J. Schroder, and D.B. Collinge. 1998. A chalcone synthase with an unusual substrate preference is expressed in barley leaves in response to UV light and pathogen attack. Plant Mol. Biol. 37, 849-857 https://doi.org/10.1023/A:1006031822141
  8. Dixon, R.A., C.J. Lamb, S. Masoud, V.J. Sewalt, and N.L. Paiva. 1996. Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses. Gene 179, 61-71 https://doi.org/10.1016/S0378-1119(96)00327-7
  9. Dixon, R.A., L. Achnine, P. Kota, C.J. Liu, M.S.S. Reddy, and L.J. Wang. 2002. The phenylpropanoid pathway and plant defence - a genomics perspective. Mol. Plant Pathol. 3, 371-390 https://doi.org/10.1046/j.1364-3703.2002.00131.x
  10. Ebel, J., W.E. Schmidt, and R. Loyal. 1984. Phytoalexin synthesis in soybean cells: elicitor induction of phenylalanine ammonialyase and chalcone synthase mRNAs and correlation with phytoalexin accumulation. Arch. Biochem. Biophys. 232, 240-248 https://doi.org/10.1016/0003-9861(84)90540-X
  11. Ehlting, J., D. Buttner, Q. Wang, C.J. Douglas, I.E. Somssich, and E. Kombrink. 1999. Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J. 19, 9-20 https://doi.org/10.1046/j.1365-313X.1999.00491.x
  12. Ferrer, J.L., J.M. Jez, M.E. Bowman, R.A. Dixon, and J.P. Noel. 1999. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat. Struct. Biol. 6, 775-784 https://doi.org/10.1038/11553
  13. Forkmann, G. and S. Martens. 2001. Metabolic engineering and applications of flavonoids. Curr. Opin. Biotechnol. 12, 155-160 https://doi.org/10.1016/S0958-1669(00)00192-0
  14. Fujii, I., A. Watanabe, and Y. Ebizuka. 2004. More functions for multifunctional polyketide synthases p. 97-125. In J.S. Tkacz, L. Lange (eds.), Advances in Fungal Biotechnology for Industry,Agriculture, and Medicine. Kluwer Academic/Plenum Publishers
  15. Funa, N., Y. Ohnishi, I. Fujii, M. Shibuya, Y. Ebizuka, and S. Horinouchi. 1999. A new pathway for polyketide synthesis in microorganisms. Nature 400, 897-899 https://doi.org/10.1038/23748
  16. Gardiner, S.E., J. Schroder, U. Matern, D. Hammer, and K. Hahlbrock. 1980. mRNA-dependent regulation of UDP-apiose synthase activity in irradiated plant cells. J. Biol. Chem. 255, 10752-10757
  17. Gensheimer, M. and A. Mushegian. 2004. Chalcone isomerase family and fold: no longer unique to plants. Protein Science 13, 540-544 https://doi.org/10.1110/ps.03395404
  18. Graziani, S., C. Vasnier, and M.J. Daboussi. 2004. Novel polyketide synthase from Nectria haematococca. Appl. Environ. Microbiol. 70, 2984-2988 https://doi.org/10.1128/AEM.70.5.2984-2988.2004
  19. Ishi, K., J. Maruyama, P.R. Juvvadi, H. Nakajima, and K. Kitamoto. 2005. Visualizing nuclear migration during conidiophore development in Aspergillus nidulans and Aspergillus oryzae: multinucleation of conidia occurs through direct migration of plural nuclei from phialides and confers greater viability and early germination in Aspergillus oryzae. Biosci. Biotechnol. Biochem. 69, 747-754 https://doi.org/10.1271/bbb.69.747
  20. Jensen, K.A., K.M.C. Evans, T.K. Kirk, and K.E. Hammel. 1994. Biosynthetic pathway for veratryl alcohol in the ligninolytic fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 60, 709-714
  21. Jez, J.M., M.E. Bowman, R.A. Dixon, and J.P. Noel. 2000. Structure and mechanism of evolutionarily unique enzyme chalcone isomerase. Nat. Struc. Biol. 7, 786-791 https://doi.org/10.1038/79025
  22. Jorgensen, K., A.V. Rasmussen, M. Morant, A.H. Nielsen, N. Bjarnholt, M. Zagrobelny, S. Bak, and B.L. Moller. 2005. Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant. Biol. 8, 280- 291 https://doi.org/10.1016/j.pbi.2005.03.014
  23. Kim S.H., D. Virmani, K. Wake., K. MacDonald, J.W. Kronstad, and B.E. Ellis . 2001. Cloning and disruption of a phenylalanine ammonia-lyase gene from Ustilago maydis. Curr. Genet. 40, 40-48 https://doi.org/10.1007/s002940100230
  24. Kitamoto, K., K. Gomi, K. Goto, and S. Hara. 1991. Genetic transfer applied to traditional sake brewing. Biotechnol. Genet. Eng. Rev. 9, 89-125 https://doi.org/10.1080/02648725.1991.10647878
  25. Kitamoto, K. 2002. Molecular biology of the Koji molds. Adv. Appl. Microbiol. 51, 129-153 https://doi.org/10.1016/S0065-2164(02)51004-2
  26. Kusumoto, K., Y. Nogata, and H. Ohta. 2000. Directed deletions in the aflatoxin biosynthesis gene homolog cluster of Aspergillus oryzae. Curr. Genet. 37, 104-111 https://doi.org/10.1007/s002940050016
  27. Liou, G.F. and C. Khosla. 2003. Building-block selectivity of polyketide synthases. Curr. Opin. Chem. Biol. 7, 279-284 https://doi.org/10.1016/S1367-5931(03)00016-4
  28. Loake, G.J., A.D. Choudhary, M.J. Harrison, M. Mavandad , C.J. Lamb, and R.A. Dixon. 1991. Phenylpropanoid pathway intermediates regulate transient expression of a chalcone synthase gene promoter. Plant Cell. 3, 829-40 https://doi.org/10.1105/tpc.3.8.829
  29. Loake, G.J., O. Faktor, C.J. Lamb, and R.A Dixon. 1992. Combination of H-box CCTACC(N)7CT. and G-box (CACGTG) cis elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate p-coumaric acid. Proc. Natl. Acad. Sci. USA 89, 9230- 9234
  30. Machida, M., K. Asai, M. Sano, T. Tanaka, T. Kumagai, G. Terai, K. Kusumoto, T. Arima, O. Akita, Y. Kashiwagi, K. Abe, K. Gomi, H. Horiuchi, K. Kitamoto, T. Kobayashi, M. Takeuchi, D.W. Denning, J.E. Galagan, W.C. Nierman, J. Yu et al. 2005. Genome sequencing and analysis of Aspergillus oryzae. Nature, In Press
  31. Moore, B.S. and J.N. Hopke. 2001. Discovery of a new bacterial polyketide biosynthetic pathway. Chembiochem. 2, 35-38 https://doi.org/10.1002/1439-7633(20010105)2:1<35::AID-CBIC35>3.0.CO;2-1
  32. Murakami, H. 2000. Koji-gaku, p. 110-165. Brewing society of Japan, 4th ed. Tokyo
  33. Narozna, D., J. Pas, J. Schneider, and C.J. Madrzak. 2004. Two sequences encoding chalcone synthase in yellow lupin (Lupinus luteus l.) may have evolved by gene duplication. Cell. Mol. Biol. Lett. 9, 95-105
  34. Nijveldt, R.J., E. van Nood, D.E. van Hoorn, P.G. Boelens, K. van Norren, and P.A. van Leeuwen. 2001. Flavonoids: a review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 74, 418-425 https://doi.org/10.1093/ajcn/74.4.418
  35. Ro, D.K. and C.J. Douglas. 2004. Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae): implications for control of metabolic flux into the phenylpropanoid pathway. J. Biol. Chem. 279, 2600-2607 https://doi.org/10.1074/jbc.M309951200
  36. Saxena, P., G. Yadav, D. Mohanty, and R.S. Gokhale. 2003. A new family of type III polyketide synthases in Mycobacterium tuberculosis. J. Biol. Chem. 278, 44780-44790 https://doi.org/10.1074/jbc.M306714200
  37. Scheel, D. and K. Hahlbrock. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 40, 347-369 https://doi.org/10.1146/annurev.pp.40.060189.002023
  38. Schijlen, E.G., C.H. Ric de Vos, A.J. van Tunen, and A.G. Bovy. 2004. Modification of flavonoid biosynthesis in crop plants. Phytochemistry 65, 2631-2648 https://doi.org/10.1016/j.phytochem.2004.07.028
  39. Schuster, B. and J. Retey. 1994. Serine-202 is the putative precursor of the active site dehydroalanine of phenylalanine ammonia lyase. Site-directed mutagenesis studies on the enzyme from parsley (Petroselinum crispum L.). FEBS Lett. 349, 252-254 https://doi.org/10.1016/0014-5793(94)00681-4
  40. Seshime, Y., P.R. Juvvadi, I. Fujii, and K. Kitamoto. 2005a. Discovery of a novel superfamily of type III polyketide synthases in Aspergillus oryzae. Biochem. Biophys. Res. Commun. 331, 253-260 https://doi.org/10.1016/j.bbrc.2005.03.160
  41. Seshime, Y., P.R. Juvvadi, I. Fujii, and K. Kitamoto. 2005b. Genomic evidences for the existence of a phenylpropanoid metabolic pathway in Aspergillus oryzae. Biochem. Biophys. Res. Commun. 337, 747-751 https://doi.org/10.1016/j.bbrc.2005.08.233
  42. Tudzynski, B. 2005. Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl. Microbiol. Biotechnol. 66, 597-611 https://doi.org/10.1007/s00253-004-1805-1
  43. Varga, J., K. Rigo, S. Kocsube, B. Farkas, and K. Pal. 2003. Diversity of polyketide synthase gene sequences in Aspergillus species. Res. Microbiol. 154, 593-600 https://doi.org/10.1016/S0923-2508(03)00169-4
  44. Walton, J.D. 2000. Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet. Biol. 30, 167–171
  45. Werck-Reichhart, D. 1995. Cytochromes P450 in phenylpropanoid metabolism. Drug Metabol. Drug Interact. 12, 221-243
  46. Whitbred J.M. and M.A. Schuler. 2000. Molecular characterization of CYP73A9 and CYP82A1 P450 genes involved in plant defense in pea. Plant Physiol. 124, 47-58 https://doi.org/10.1104/pp.124.1.47
  47. Wilson, D.M., W. Mubatanhema, and Z. Jurjevic. 2002. Biology and ecology of mycotoxigenic Aspergillus species as related to economic and health concerns. Adv. Exp. Med. Biol. 504, 3-17
  48. Winkel-Shirley, B. 2002. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 5, 218–223
  49. Yu, J., D. Bhatnagar, and T.E. Cleveland. 2004. Completed sequence of aflatoxin pathway gene cluster in Aspergillus parasiticus. FEBS Lett. 564, 126-130 https://doi.org/10.1016/S0014-5793(04)00327-8