Analysis of Microbial Community During the Anaerobic Dechlorination of Perchloroethylene and Trichloroethylene

Perchloroethylene과 Trichloroethylene의 혐기적 탈염소화 및 미생물 군집 분석

  • Lee Jae-Won (Environmental Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim Byung-Hyuk (Environmental Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ahn Chi-Yong (Environmental Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim Hee-Sik (Environmental Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yoon Byung-Dae (Environmental Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh Hee-Mock (Environmental Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology)
  • 이재원 (한국생명공학연구원 환경생명공학연구실) ;
  • 김병혁 (한국생명공학연구원 환경생명공학연구실) ;
  • 안치용 (한국생명공학연구원 환경생명공학연구실) ;
  • 김희식 (한국생명공학연구원 환경생명공학연구실) ;
  • 윤병대 (한국생명공학연구원 환경생명공학연구실) ;
  • 오희목 (한국생명공학연구원 환경생명공학연구실)
  • Published : 2005.12.01

Abstract

In this study, the anaerobic enrichment cultivation was performed with the sediments and the dredged soils from the cities of Ulsan, Masan, Yeosu, Gwangyang, Ansan and Seongnam. Acetate as an electron donor and PCE (perchloroethylene) or TCE (trichloroethylene) as an electron acceptor were injected into the serum bottle with an anaerobic medium. After the incubation of 12 weeks, the removal efficiency of PCE was highest at $70\%$ in the treatment with the sediment of Ulsan. Also, the bacterial community structure was analyzed by D-DGGE (double denatured gradient gel electrophoresis) through PCR-based 16S rDNA approaches. The dominant species id the anaerobic enrichment were found to belong to the genus of Desulfovibrio.

울산, 여수 등 공단지역의 토양, 하천의 저니, 해양의 준설토 둥을 이용하여 난분해성 염소화합물인 PCE (perchloroethylene)및 TCE (trichloroethylene)의 혐기성 탈염소화에 관련하는 미생물을 탐색하고 이들의 탈염소화 효율을 조사하였다. 혐기성 상호대사에 의한 탈염소화 효율을 조사하기 위해 전자공여체로 acetate를 사용하여 혐기성 회분식 실험을 실시하였으며, 이와 병행하여 분자생물학적인 기법인 16S rDNA의 PCR-Double Gradient DGGE (DG-DGGE)를 이용하여 미생물의 군집을 분석하였다. 그 결과 울산 태화강 및 여수 하남천의 저니를 접종한 경우 PCE는 $70\%,\;65\%$, TCE는 $50\%,\;45\%$의 높은 탈염소화 효율을 나타내었다. 또한 16S rDNA의 PCR을 이용한 DG-DGGE로 미생물 군집을 분석한 결과, 탈염소화 효율이 높은 지역의 저니에는 Desulfovibrio sup.의 미생물이 주로 존재함을 확인하였다.

Keywords

References

  1. 박대원, 정진영, 정윤철. 1994. 혐기성 미생물의 상호대사기능을 이용한 PCE의 탈염소화. 대한환경공학회지. 16, 23-29
  2. 박정아, 허건영, 이정숙, 오윤정, 김보연, 민태익, 김치경, 안종석. 2003. 김치의 저온 발효 중 미생물 변화 양상. 미생물학회지. 39, 45-50
  3. Cremonesi, L., S. Firpo, M. Ferrari, P.G. Righetti and C. Gelfi. 1997. Double-gradient DGGE for optimized detection of DNA point mutations. BioTechniques. 22, 326-330
  4. DeWeerd, K.A., W.P. Fianagan, M.J. Brennan, J.M. Principe and J.L. Spivack. 1998. Biodegradation of trichloroethylene and dichloromethane in contaminated soil and groundwater. Bioremed. J. 2, 29-42 https://doi.org/10.1080/10889869891214196
  5. Drzyzga, O., J. Gerritse, J.A. Dijk, H. Elissen and J.C. Gottschal. 2001. Coexistence of a sulphate-reducing Desulfovibrio species and the dehalorespiring Desulfitobacterium frappieri TCE1 in defined chemostat cultures grown with various combinations of sulphate and tetrachloroethene. Environ. Microbiol. 3, 92-99 https://doi.org/10.1046/j.1462-2920.2001.00157.x
  6. Holliger, C. 1995. The anaerobic microbiology and biotreatment of chlorinated ethenes. Curr. Opin. Biotechnol. 6, 347-351 https://doi.org/10.1016/0958-1669(95)80058-1
  7. Holliger, C., G. Schraa, A.J.. stams and A.J. Zehnder. 1993. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene. Appl. Environ. Microbiol. 59, 2991-2997
  8. Ishii, K. and M. Fukui. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67, 3732-3734 https://doi.org/10.1128/AEM.67.8.3732-3734.2001
  9. Jaspers, E., K. Nauhaus, H. Cypionka and J. Overmann. 2001. Multitude and temporal variability of ecological niches as indicated by the diversity of cultivated bacterioplankton. FEMS Microbiol. Ecol. 36, 153-164 https://doi.org/10.1111/j.1574-6941.2001.tb00835.x
  10. Koizumi, Y., Y. Kozima and M. Fukui. 2003. Characterization of depth-related microbial community structure in lake sediment by denaturing gradient gel electrophoresis of amplified 16S rDNA and reversely transcribed 16S rRNA fragments. FEMS Microbiol. Ecol. 46, 147-157 https://doi.org/10.1016/S0168-6496(03)00212-5
  11. Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2, 317-322 https://doi.org/10.1016/S1369-5274(99)80055-1
  12. Muyzer, G., E.C. de Waal and A.G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel eletrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA fragments. Appl. Environ. Microbiol. 59, 695-700
  13. Sanford, R., J.R. Cole, F.E. Loffler and J.M. Tiedje. 1996. Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl. Environ. Microbiol. 62, 3800-3808
  14. Semprini, L. 1997. Strategies for the aerobic co-metabolism of chlorinated solvents. Curr. Opin. Biotechnol. 8, 296-308 https://doi.org/10.1016/S0958-1669(97)80007-9
  15. Sung, Y., K.M. Ritalahti, R.A. Sanford, J.W. Urbance, S.J. Flynn, J.M. Tiedje and P.E. Loffler. 2003. Characterization of two tetrachloroethene- reducing, acetate-oxdizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl. Environ. Microbiol. 69, 2964-2974 https://doi.org/10.1128/AEM.69.5.2964-2974.2003
  16. Vogel, T.M., C.S. Criddle and P.L. McCarty. 1987. Transformation of halogenated aliphatic compounds. Environ. Sci. Technol. 21, 722-736 https://doi.org/10.1021/es00162a001
  17. Wolin, E., M.J. Wolin and R.S. Wolfe. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238, 2882-2886
  18. Yang, Y. and P.L. McCarty. 1998. Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ. Sci. Technol. 32, 3591-3597 https://doi.org/10.1021/es980363n