Synthesis of an Amphiphilic $\pi$-Conjugated Triblock Copolymer of Poly(9,9-didodecylfluorene-2,7-diyl) and Poly(hydroxyl ethyl methacrylate)

  • Kim, Hyun-Jung (Department of Polymer Science and Engineering, Inha University) ;
  • Kim, Hyun-Seok (Department of Polymer Science and Engineering, Inha University) ;
  • Kwon, Yong-Ku (Department of Polymer Science and Engineering, Inha University)
  • 발행 : 2005.12.01

초록

A novel amphiphilic, symmetric rod-coil, triblock copolymer (denoted as PHEMA-b-PF-b-PHEMA) of poly(9,9-didodecylfluorene-2,7-diyl) (PF) and poly(hydroxyl ethyl methacrylate) (PHEMA) was synthesized. A $\pi$-conjugated poly(9,9-didodecylfluorene-2,7-diyl) (PF) was used as a rodlike midblock segment and connected with hydrophilic end blocks of poly(hydroxyl ethyl methacrylate) (PHEMA) by using an ATRP technique. The chemical structure of PHEMA-b-PF-b-PHEMA was confirmed by $^{1}H$-NMR and GPC, and its PL properties were investigated in selected solvents. Due to the dissimilarities in molecular conformation and solubility between PHEMA and PF blocks, both block segments were segregated to display a phase-separated morphology on a Si wafer.

키워드

참고문헌

  1. E. Mena-Osteritz, A. Meyer, B. M. W. Langeveld-Voss, R. A. J. Janssen, E. W. Meijer, and P. Bäuerle, Angew. Chem., Int. Ed., 39, 2679 (2000) https://doi.org/10.1002/1521-3773(20000804)39:15<2679::AID-ANIE2679>3.0.CO;2-2
  2. A. D. Child and J. R. Reynolds, Macromolecules, 27, 1975 (1994) https://doi.org/10.1021/ma00085a050
  3. P. B. Balanda, M. B. Ramey, and J. R. Reynolds, Macromolecules, 32, 3970 (1999) https://doi.org/10.1021/ma982017w
  4. G. Widawski, M. Rawiso, and B. Francois, Nature, 369, 387 (1994). https://doi.org/10.1038/369387a0
  5. B. Francois, O. Pitois, and J. François, Adv. Mater., 7, 1041 (1995) https://doi.org/10.1002/adma.19950071217
  6. A. J. Heeger, Angew. Chem. Int. Ed., 40, 2591 (2001) https://doi.org/10.1002/1521-3773(20010105)40:1<1::AID-ANIE1>3.0.CO;2-F
  7. P. K. Tsolakis and J. K. Kallitsis, Chem. Eur., 9, 936 (2003) https://doi.org/10.1002/chem.200390023
  8. G. Klarner, J. -I. Lee, V. Y. Lee, E. Chan, J. -P. Chen, A. Nelson, D. Markiewicz, R. Siemens, J. C. Scott, and R. D. Miller, Chem. Mater., 11, 1800 (1999) https://doi.org/10.1021/cm990027l
  9. J. Liu, E. Sheina, T. Kowalewski, and R. D. McCullough, Angew. Chem. Int. Ed., 41, 329 (2002) https://doi.org/10.1002/1521-3773(20020118)41:2<329::AID-ANIE329>3.0.CO;2-M
  10. L. Yu, H. Wang, H. H. Wang, V. S. Urban, K. C. Littrell, P. Thiyagarajan, and L. J. Yu, J. Am. Chem. Soc., 122, 6855 (2000) https://doi.org/10.1021/ja0010812
  11. L. Yu, W. Li, H. Wang, T. L. Morkved, and H. M. Jaeger, Macromolecules, 32, 3034 (1999) https://doi.org/10.1021/ma981679i
  12. J. Jo, C. Chi, S. Hoger, G . Wegner, and D. Y. Yoon, Chem. Eur., 10, 2681 (2004) https://doi.org/10.1002/chem.200305659
  13. P. Leclere, A. Calderone, D. Marsitzky, V. Francke, Y. Geerts, K. Mullen, J. L. Bredas, and R. Lazzaroni, Adv. Mater., 12, 1042 (2000) https://doi.org/10.1002/1521-4095(200007)12:14<1042::AID-ADMA1042>3.0.CO;2-J
  14. C. L. Chochos, P. K. Tsolakis, V. G. Gregoriou, and J. K. Kallitsis, Macromolecules, 37, 2502 (2004) https://doi.org/10.1021/ma035527l
  15. M. Surin, D. Marsitzky, A. C. Grimsdale, K. Mullen, R. Lazzaroni, and P. Leclere, Adv. Funct. Mater., 14, 708 (2004) https://doi.org/10.1002/adfm.200305191
  16. B. Liu and G. C. Bazan, J. Am. Chem. Soc., 126, 1942 (2004) https://doi.org/10.1021/ja037954k
  17. M. Fukuda, K. Sawada, and K. Yoshino, J. Polym. Sci., Polym. Chem., 31, 2465 (1993) https://doi.org/10.1002/pola.1993.080311006
  18. S. Lu, L. Fan, and S. J. Chua, Macromolecules, 36, 304 (2003) https://doi.org/10.1021/ma020408b
  19. X. Gong, D. Moses, A. J. Heeger, and S. Xiao, Synthetic Metals, 141, 17 (2004) https://doi.org/10.1016/j.synthmet.2003.06.003
  20. B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH Verlag GmbH, Paris, 2002, Chap.2, p.24
  21. J. Gunther and S. I. Stupp, Langmuir, 17, 6530 (2001) https://doi.org/10.1021/la0010572