Synthesis and pH-Dependent Micellization of Sulfonamide-Modified Diblock Copolymer

  • Pal Ravindra R. (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Kim Min Sang (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Lee Doo Sung (Department of Polymer Science and Engineering, Sungkyunkwan University)
  • 발행 : 2005.12.01

초록

The main objective of this study was to develop and characterize pH-sensitive biodegradable polymeric materials. For pH-sensitivity, we employed three kinds of moieties: 2-amino-3-(lH-imidazol-4-yl)-propionic acid (H), N-[4-( 4,6-dimethyl-pyrimidin-2ylsulfamoyl)-phenyl]succinamic acid (SM), and 2- {3-[ 4-( 4,6-dimethyl-pyrim­idin- 2-ylsulfamoyl)-phenylcarbamoyl]-propionylamino} -3-(3 H - imidazol-4-yl)-propionic acid (SH). The pH -sensitive diblock copolymers were synthesized by ring opening polymerization and coupling reaction from poly(ethylene glycol) (MPEG), $\varepsilon$-caprolactone (CL), D,L-lactide (LA) and pH-sensitive moieties. The pH-sensitive SH molecule was synthesized in a two-step reaction. The first step involved the synthesis of SHM, a methyl ester derivative of SH, by coupling reaction of SM and L-histidine methyl ester dihydrochloride, whereas the second step involved the hydrolysis of the same. The synthesized SM, SHM and SH molecules were characterized by FTIR, $^{1}H$-NMR and $^{13}C$-NMR spectroscopy, whereas diblock copolymers and pH-sensitive diblock copolymer were characterized by $^{1}H$-NMR and GPC analysis. The critical micelle concentrations were determined at various pH conditions by fluorescence technique using pyrene as a probe. The micellization and demicellization studies of pH-sensitive diblock copolymers were also done at different pH conditions. The pH-sensitivity was further established by acid-based titration and DLS analysis.

키워드

참고문헌

  1. M. Tobio, R. Gref, A. Sanchez, R. Langer, and M. J. Alonso, Pharm. Res., 15, 270 (1998) https://doi.org/10.1023/A:1011922819926
  2. C. E. Soma, C. Dubernet, G. Barratt, F. Nemati, M. Appel, S. Benita, and P. Couvreur, Pharm. Res., 16, 1710 (1999) https://doi.org/10.1023/A:1018902031370
  3. R. K. Jain, J. Control. Rel., 53, 49 (1998) https://doi.org/10.1016/S0168-3659(97)00237-X
  4. J. L. S. Au, S. H. Jang, J. Zheng, C. T. Chen, S. Song, L. Hu, and M. G. Weintjes, J. Control. Rel., 74, 31 (2001) https://doi.org/10.1016/S0168-3659(01)00305-4
  5. K. Kataoka, J. Macromol. Sci. Pure Appl. Chem., A31, 1759 (1994)
  6. B. Jeong, Y. H. Bae, and S. W. Kim, Colloids and Surfaces B:Biointerfaces, 16, 185 (1999) https://doi.org/10.1016/S0927-7765(99)00069-7
  7. A. Benrebouh, D. Avoce, and X. X. Zhu, Polymer, 42, 4031 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  8. H. C. Chiu, A. T. Wu, and Y. F. Lin, Polymer, 42, 1471 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  9. E. E. L. Kathmann, L. A. White, and C. A. McCormick, Macromolecules, 30, 5297 (1997) https://doi.org/10.1021/ma961214x
  10. X. M. Liu and L. S. Wang, Biomaterials, 25, 1929 (2004) https://doi.org/10.1016/j.biomaterials.2003.08.023
  11. A. Potineni, D. M. Lynn, R. Langer, and M. M. Amiji, J. Control. Rel., 86, 223 (2003) https://doi.org/10.1016/S0168-3659(02)00374-7
  12. S. K. Han, K. Na, and Y. H. Bae, Colloids and Surfaces A:Physiochem. Eng. Aspects, 214, 49 (2003) https://doi.org/10.1016/S0927-7757(02)00389-8
  13. M. Stubbs, P. M. J. McSheehy, J. R. Griffiths, and C. L. Bashford, Mol. Med. Today, 6, 15 (2000) https://doi.org/10.1016/S1357-4310(99)01615-9
  14. I. F. Tannock and D. Rotin, Cancer Res., 49, 4373 (1989)
  15. S. I. Kang and Y. H. Bae, Macromol. Symp., 172, 149 (2001)
  16. S. Y. Park and Y. H. Bae, Macromol. Rapid Commun., 20, 269 (1999) https://doi.org/10.1002/(SICI)1521-3927(19990501)20:5<269::AID-MARC269>3.0.CO;2-3
  17. S. I. Kang and Y. H. Bae, J. Control. Rel., 80, 145 (2002) https://doi.org/10.1016/S0168-3659(02)00021-4
  18. Z. Huang, S. Chen, and J. Huang, J. Appl. Polym. Sci., 73, 1379 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990822)73:8<1379::AID-APP4>3.0.CO;2-3
  19. A. Kumar, S. Ghilagaber, J. Knight, and P. B. Wyatt, Tetrahedron Lett., 43, 6991 (2002) https://doi.org/10.1016/S0040-4039(02)01587-3
  20. H. G. J. Visser, R. J. M. Notle, J. W. Zwikker, and W. Drenth, J. Org. Chem., 50, 3138 (1985) https://doi.org/10.1021/jo00217a024
  21. S. Zaramella, R. Stromberg, and E. Yeheskiely, Eur. J. Org. Chem., 2633 (2002)
  22. E. S. Lee, H. J. Shin, K. Na, and Y. H. Bae, J. Control. Rel., 90, 363 (2003) https://doi.org/10.1016/S0168-3659(03)00205-0
  23. J. S. Moore and S. I. Stupp, Macromolecules, 23, 65 (1990) https://doi.org/10.1021/ma00203a013
  24. A. Patchornik, A. Berger, and E. Katchalski, J. Am. Chem. Soc., 79, 5227 (1957) https://doi.org/10.1021/ja01576a043