Physical Properties and Foaming Characteristics of Poly(butylene adipate-co-succi nate)/Thermoplastic Starch Blends

Poly(butylene adipate-co-succinate)/Thermoplastic Starch 블렌드의 물성과 발포특성

  • Kim, Sang-Woo (Department of Polymer Science Kyungpook National University) ;
  • Park, Joon-Hyun (Technical Research Institute, Aekyung Chemical Co., Ltd) ;
  • Kim, Dae-Jin (Department of Polymer Science Kyungpook National University) ;
  • Lim, Hak-Sang (Department of Environmental Engineering, Semyung University) ;
  • Seo, Kwan-Ho (Department of Polymer Science Kyungpook National University)
  • 김상우 (경북대학교 고분자공학과) ;
  • 박준현 (애경화학주식회사 기술연구소) ;
  • 김대진 (경북대학교 고분자공학과) ;
  • 임학상 (세명대학교 환경공학과) ;
  • 서관호 (경북대학교 고분자공학과)
  • Published : 2005.12.01

Abstract

Thermoplastic starch (TPS) was manufactured and blended with poly(butylene adipate-co-succinate) (PBAS), which is one of the most popular biodegradable aliphatic polyesters. The effects of the TPS contents on the mechanical properties, thermal characteristics, and biodegradability of PBAS/TPS blends were investigated. The foaming characteristics of those were also studied. With small amount of TPS, mechanical properties of the blends were largely deteriorated and the variations of them decreased with more addition of TPS. In addition, TPS decreased crystallinity and thermal decomposition temperature of PBAS. The PBAS/TPS foam having maximum blowing ratio was obtained with 20 Phr of TPS, and their blowing ratio decreased with the further increase of TPS.

전분을 가소화시킨 thermoplastic starch(TPS)를 제조하고 이를 생분해성 지방족 폴리에스테르의 하나인 poly (butylene adipate-co-succinate) (PBAS)와 블렌드하였다. TPS의 조성 및 함량이 PBAS의 기계적 물성과 열적 성질 및 생분해도에 미치는 영향과 PBAS/TPS 블렌드의 발포특성을 관찰하였다. 소량의 TPS가 첨가됨에 따라 PBAS/TPS 블렌드의 인장강도,신장률 및 인열강도는 급격히 저하되다가 함량이 증가할수록 감소폭이 둔화되는 경향을 보였다. TPS는 PBAS 블렌드의 결정화도와 열분해온도를 낮추었다. PBAS/TPS 블렌드에서 TPS의 함량이 20 phr일 때 최고의 발포배율을 가지는 발포체가 얻어졌으며,TPS 함량이 증가할수록 발포 배율은 낮아졌다.

Keywords

References

  1. R. J. Ehrig, Plastic Recycling: Product and Processes, R. J. Ehrig, Editor, Chap. 1, Hanser Gardner Publications, New York, 1989
  2. ASTM D883 (1992)
  3. A. C. Albertsson and S. Krlsson, Chemistry and Technology of Biodegradable Polymers, G. J. L. Griffin, Editor, Chap. 2, Chapman & Hall, 1994
  4. G. J. L. Griffin, U.S. Patent 4,016,017 (1977)
  5. G. J. L. Griffin, U.S. Patent 4,021,388 (1977)
  6. G. J. L. Griffin, U.S. Patent 4,983,651 (1991)
  7. W. M. Doane, Starch, 44, 292 (1992)
  8. R. L. Shorgen, G. F. Fanta, and W. M. Doane, Starch, 45, 276 (1993) https://doi.org/10.1002/star.19930450806
  9. J. Lorcks, Polym. Degrad. Stabil., 59, 245 (1998) https://doi.org/10.1016/S0141-3910(97)00168-7
  10. T. Simmons and E. L. Thomas, J. Appl. Polym. Sci., 58, 2259 (1995) https://doi.org/10.1002/app.1995.070580605
  11. L. Zhiqiang, F. Ti, and Y. Xiao-su, J. Appl. Polym. Sci., 74, 2667 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991209)74:11<2667::AID-APP14>3.0.CO;2-D
  12. M. Vikman, S. H. D. Hulleman, M. V. D. Zee, P. Myllarinen, and H. Feil, J. Appl. Polym. Sci., 74, 2594 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991209)74:11<2594::AID-APP5>3.0.CO;2-R
  13. L. Averous, N. Fauconnier, L. Mork, and C. Fringam, J. Appl. Polym. Sci., 76, 1117 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000516)76:7<1117::AID-APP16>3.0.CO;2-W
  14. J. S. Park and E. Ruckenstein, Carbohyd. Polym., 46, 373 (2001) https://doi.org/10.1016/S0144-8617(00)00274-5
  15. D. Lourdin, L. Coiginard, H. Bizot, and P. Colonna, Polymer, 38, 5401 (1997) https://doi.org/10.1016/S0032-3861(97)00082-7
  16. L. Kuutti, J. Peltonen, P. Myllarinen, O. Teleman, and P. Forssell, Carbohyd. Polym., 37, 7 (1998) https://doi.org/10.1016/S0144-8617(98)00042-3
  17. Y. Matsusue, T. yamamuro, M. Oka, Y. Shikinami, S. H. Hyon, and Y. Ikada, J. Biomed. Mater. Res., 26, 1553 (1992) https://doi.org/10.1002/jbm.820261203
  18. D. J. Kim, H. J. Kang, and K. H. Seo, J. Appl. Polym. Sci., 81, 2443 (2001) https://doi.org/10.1002/app.1407
  19. G. K. Moates, T. R. Noel, R. Parker, and S. G. Ring, Carbohyd. Polym., 44, 247 (2001) https://doi.org/10.1016/S0144-8617(00)00195-8
  20. J. L. Willett, J. Appl. Polym. Sci., 54, 1685 (1994) https://doi.org/10.1002/app.1994.070541112
  21. S. Lim, J. Jane, S. Rajagopalan, and A. Seib, Biotech. Prog., 8, 51 (1992) https://doi.org/10.1021/bp00013a008
  22. L. Averous, L. Moro, P. Dole, and C. Fringant, Polymer, 41, 4157 (1999)
  23. R. F. T. Stepto, Macromol. Symp., 152,73 (2000)
  24. D. Cam, S. H. Hyon, and Y. Ikada, Biomaterials, 16, 833 (1995) https://doi.org/10.1016/0142-9612(95)94144-A