The Roles of Kupffer Cells in Hepatic Dysfunction Induced by Ischemia/Reperfusion in Rats

  • Jung Joo-Yeon (Narcotic and Neuropharmacological Drug Division, Drug Evaluation Department, Korea Food and Drug Administration) ;
  • Lee Sun-Mee (College of Pharmacy, Sungkyunkwan University)
  • Published : 2005.12.01

Abstract

This study examined the role of Kupffer cells in altering the hepatic secretory and microsomal function during ischemia and reperfusion (ls/Rp). Rats were subjected to 60 min of hepatic ischemia, followed by 1 and 5 h of reperfusion. Gadolinium chloride ($GdCl_{3}$, 7.5 mg/kg body weight, intravenously) was used to inactivate the Kupffer cells 1 day prior to ischemia. Is/Rp markedly increased the serum aminotransferase level and the extent of lipid peroxidation. $GdCl_{3}$ significantly attenuated these increases. Is/Rp markedly decreased the bile. flow and cholate output, and $GdCl_{3}$ restored their secretion. The cytochrome P450 content was decreased by Is/Rp. However, these decreases were not prevented by $GdCl_{3}$. The aminopyrine N-demethylase activity was decreased by Is/Rp, while the aniline p-hydroxylase activity was increased. $GdCl_{3}$ prevented the increase in the aniline p-hydroxylase activity. Overall, Is/Rp diminishes the hepatic secretory and microsomal drug-metabolizing functions, and Kupffer cells are involved in this hepatobiliary dysfunction.

Keywords

References

  1. Bautista, A. P., Meszaros, K., Bojta, J., and Spitzer, J. J., Superoxide anion generation in the liver during the early stage of endotoxemia in rats. J. Leukoc. Biol., 48, 123-128 (1990) https://doi.org/10.1002/jlb.48.2.123
  2. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  3. Bremer, C., Bradford, B. U., Hunt, K. J., Knecht, K. T., Connor, H. D., Mason, R. P., and Thurman, R. G., Role of Kupffer cells in the pathogenesis of hepatic reperfusion injury. Am. J. Physiol., 267, G630-G636 (1994)
  4. Chen, J. Q., Strom, A., Gustafsson, J. A., and Morgan, E. T., Suppression of the constitutive expression of cytochrome P- 450 2C11 by cytokines and interferons in primary cultures of rat hepatocytes: comparison with induction of acute-phase genes and demonstration that CYP2C11 promoter sequences are involved in the suppressive response to interleukins 1 and 6. Mol. Pharmacol., 47, 940-947 (1995)
  5. Drugas, G. T., Paidas, C. N., Yahanda, A. M., Ferguson, D., and Clemens, M. G., Conjugated desferoxamine attenuates hepatic microvascular injury following ischemia/reperfusion. Circ. Shock, 34, 278-283 (1991)
  6. Forker, E. L., Mechanisms of hepatic bile formation. Annu. Rev. Physiol., 39, 323-347 (1977) https://doi.org/10.1146/annurev.ph.39.030177.001543
  7. Giakoustidis, D. E., Iliadis, S., Tsantilas, D., Papageorgiou, G., Kontos, N., Kostopoulou, E., Botsoglou, N. A., Gerasimidis, T., and Dimitriadou, A., Blockade of Kupffer cells by gadolinium chloride reduces lipid peroxidation and protects liver from ischemia/reperfusion injury. Hepatogastroenterology, 50, 1587-1592 (2003)
  8. Hisama, N., Yamaguchi, Y., Ishiko, T., Miyanari, N., Ichiguchi, O., Goto, M., Mori, K., Watanabe, K., Kawamura, K., Tsurufuji, S., and Ogawa, M., Kupffer cell production of cytokine-induced neutrophil chemoattractant following ischemia/reperfusion injury in rats. Hepatology, 24, 1193- 1198 (1996) https://doi.org/10.1002/hep.510240535
  9. Huet, P. M. and Villeneuve, J. P., Determinants of drug disposition in patients with cirrhosis. Hepatology, 3, 913-918 (1983) https://doi.org/10.1002/hep.1840030604
  10. Imamura, H., Sutto, F., Brault, A., and Huet, P. M., Role of Kupffer cells in cold ischemia/reperfusion injury of rat liver. Gastroenterology, 109, 189-197 (1995) https://doi.org/10.1016/0016-5085(95)90284-8
  11. Irvin, J. L., Johnston, C. G., and Kopara, J., A photometric method for the determination of cholate in bile and blood. J. Biol. Chem., 153, 439-444 (1944)
  12. Jaeschke, H. and Farhood, A., Neutrophil and Kupffer cellinduced oxidant stress and ischemia-reperfusion injury in rat liver. Am. J. Physiol., 260, G355-G362 (1991) https://doi.org/10.1152/ajpcell.1991.260.2.C355
  13. Kamiike, W., Nakahara, M., Nakao, K., Koseki, M., Nishida, T., Kawashima, Y., Watanabe, F., and Tagawa, K., Correlation between cellular ATP level and bile excretion in the rat liver. Transplantation, 39, 50-55 (1985) https://doi.org/10.1097/00007890-198501000-00005
  14. Kono, H., Bradford, B. U., Rusyn, I., Fujii, H., Matsumoto, Y., Yin, M., and Thurman, R. G., Development of an intragastric enteral model in the mouse: studies of alcohol-induced liver disease using knockout technology. J. Hepatobiliary Pancreat. Surg., 7, 395-400 (2000) https://doi.org/10.1007/s005340070034
  15. Lee, D. and Clark, D. G., Influence of ischaemic time on the production of bile by perfused rat liver. Cryobiology, 14, 37-44 (1977) https://doi.org/10.1016/0011-2240(77)90120-1
  16. Lee, S.-M. and Clemens, M. G., Effect of alpha-tocopherol on hepatic mixed function oxidases in hepatic ischemia/ reperfusion. Hepatology, 15, 276-281 (1992) https://doi.org/10.1002/hep.1840150217
  17. Lee, S.-M., Park, M.-J., Cho, T.-S., and Clemens, M. G., Hepatic injury and lipid peroxidation during ischemia and reperfusion. Shock, 13, 279-284 (2000) https://doi.org/10.1097/00024382-200004000-00005
  18. Masugi, F. and Nakamura, T., Effect of vitamin E deficiency on the level of superoxide dismutase, glutathione peroxidase, catalase and lipid peroxide in rat liver. Int. J. Vitam. Nutr. Res., 46, 187-191 (1976)
  19. Mieyal, J. J. and Blumer, J. L., Accleration of autooxidation of human oxyhemoglobin by aniline and its relation to hemoglobin-catalyzed aniline hydroxylation. J. Biol. Chem., 251, 3442-3446 (1976)
  20. Omura, T. and Sato, R., The carbon monoxide-binding pigment of liver microsomes. J. Biol. Chem., 239, 2370-2378 (1964)
  21. Pardini, R. S., Toxicity of oxygen from naturally occurring redoxactive pro-oxidants. Arch. Insect. Biochem. Physiol., 29, 101- 118 (1995) https://doi.org/10.1002/arch.940290203
  22. Schenkman, J. B., Remmer, H., and Estabrook, R. W., Spectral studies of drug interaction with hepatic microsomal cytochrome. Mol. Pharmacol., 3, 113-123 (1967)
  23. Shiratori, Y., Kawase, T., Shiina, S., Okano, K., Sugimoto, T., Teraoka, H., Matano, S., Matsumoto, K., and Kamii, K., Modulation of hepatotoxicity by macrophages in the liver. Hepatology, 8, 815-821 (1988) https://doi.org/10.1002/hep.1840080420
  24. Slater, T. F. and Delaney, V. B., Liver adenosine triphosphate content and bile flow rate in the rat. Biochem. J., 116, 303- 308 (1970) https://doi.org/10.1042/bj1160303
  25. Thurman, R. G., Marzi, I., Seitz, G., Thies, J., Lemasters, J. J., and Zimmerman, F., Hepatic reperfusion injury following orthotopic liver transplantation in the rat. Transplantation, 46, 502-506 (1988) https://doi.org/10.1097/00007890-198810000-00006