Protective Effect of KR-31378 on Oxidative Stress in Cardiac Myocytes

  • Kim Mi-Young (Department of Physiology, School of Medicine, Ajou University) ;
  • Lee Sunkyung (Medical Science Division, Korea Research Institute of Chemical Technology) ;
  • Yi Kyu Yang (Medical Science Division, Korea Research Institute of Chemical Technology) ;
  • Yoo Sung Eun (Medical Science Division, Korea Research Institute of Chemical Technology) ;
  • Lee Dong-Ha (AgroPharma Research Institute, Dongbu Hannong Chemical Co. Ltd.) ;
  • Lim Hong (AgroPharma Research Institute, Dongbu Hannong Chemical Co. Ltd.) ;
  • Kim Ho Soon (AgroPharma Research Institute, Dongbu Hannong Chemical Co. Ltd.) ;
  • Lee Soo Hwan (Department of Physiology, School of Medicine, Ajou University) ;
  • Baik Eun Joo (Department of Physiology, School of Medicine, Ajou University) ;
  • Moon Chang-Hyun (Department of Physiology, School of Medicine, Ajou University) ;
  • Jung Yi-Sook (Department of Physiology, School of Medicine, Ajou University)
  • Published : 2005.12.01

Abstract

In this study, we investigated whether a novel anti-ischemic $K_{ATP}$ opener KR-31378 [(2S,3S,4R)­N'-cyano-N-(6-amino-3,4-dihydro-3-hydroxy-2 -methly-2-dimethoxymethly-2H-benzopyran-4-yl)­N'-benzylguanidine] has protective effect against oxidative stress-induced death in heart-derived H9c2 cells. Cell death was induced by BSO, butionine sulfoximine, which inhibits GSH synthesis and subsequently increases reactive oxygen species (ROS) level. Cell death was quantitatively determined by measuring lactate dehydrogenase (LDH) activity and stained by Hoechst 33258. BSO-induced ROS production and mitochondrial membrane potential (MMP) were measured using 2',7'-dichlorofluorescein diacetate oxidation and rhodamine 123, respectively. Both the LDH release and the ROS elevation induced by treatment of H9c2 cells with 10 mM BSO, were significantly decreased by KR-31378. These protective effect and antioxidant effect of KR-31378 appeared to be independent on $K_{ATP}$ channel opening. Cells exposed to BSO showed an early reduction in MMP, and this reduction in MMP was significantly reversed by treatment with KR-31378. Caspase-3 activity in BSO treated H9c2 cells was remarkably increased, and this increased caspase-3 activity was significantly reversed by KR-31378. In conclusion, our results suggest that KR-31378 can produce cardioprotective effect against oxidative stress-induced cell death through antioxidant mechanism.

Keywords

References

  1. Armstrong, J. S., Steinauer, K. K., Hornung, B., Irish, J. M., Lecane, P., Birrell, G. W., Peehl, D. M., and Knox, S. J., Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell. Death. Differ., 9, 252-263 (2002) https://doi.org/10.1038/sj.cdd.4400959
  2. Bialik, S., Cryns, V. L., Drincic, A., Miyata, S., Wollowick, A. L., Srinivasan, A., and Kitsis, R. N., The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ. Res., 85, 403-414 (1999) https://doi.org/10.1161/01.RES.85.5.403
  3. Carmody, R. J. and Cotter, T. G., Signaling apoptosis: a radical approach. Redox. Rep., 6, 77-90 (2001) https://doi.org/10.1179/135100001101536085
  4. Ceconi, C., Curello, S., Cargnoni, A., Ferrari, R., Albertini, A., and Visioli, O., The role of glutathione status in the protection against ischaemic and reperfusion damage: effects of N-acetyl cysteine. J. Mol. Cell. Cardiol., 20, 5-13 (1988) https://doi.org/10.1016/S0022-2828(88)80174-3
  5. Dhalla, N. S., Temsah, R. M., and Netticadan, T., Role of oxidative stress in cardiovascular diseases. J. Hypertens., 18, 655-673 (2000) https://doi.org/10.1097/00004872-200018060-00002
  6. Domenicotti, C., Paola, D., Vitali, A., Nitti, M., d'Abramo, C., Cottalasso, D., Maloberti, G., Biasi, F., Poli, G., Chiarpotto, E., Marinari, U. M., and Pronzato, M. A., Glutathione depletion induces apoptosis of rat hepatocytes through activation of protein kinase C novel isoforms and dependent increase in AP-1 nuclear binding. Free Radic. Biol. Med., 29, 1280-1290 (2000) https://doi.org/10.1016/S0891-5849(00)00429-9
  7. Dzeja, P. P., Redfield, M. M., Burnett, J. C., and Terzic, A., Mitochondria: gateway for cytoprotection. Circ. Res., 89, 744-746 (2001)
  8. Emaus, R. K., Grunwald, R., and Lemasters, J. J., Rhodamine 123 as a probe of transmembrane potential in isolated ratliver mitochondria: spectral and metabolic properties. Biochim. Biophys. Acta, 850, 436-448 (1986) https://doi.org/10.1016/0005-2728(86)90112-X
  9. Ettorre, A., Andreassi, M., Anselmi, C., Neri, P., Andreassi, L., and Stefano, A. D., Involvement of oxidative stress in apoptosis induced by a mixture of isothiazolinones in normal human keratinocytes. J. Invest. Dermatol., 121, 328-336 (2003) https://doi.org/10.1046/j.1523-1747.2003.12360.x
  10. Haunstetter, A. and Izumo, S., Apoptosis: basic mechanisms and implications for cardiovascular disease. Med. Sci. Monit., Circ. Res., 82, 1111-1129 (1998)
  11. Hong, K. W., Kim, K. Y., Lee, J. H., Shin, H. K., Kwak, W. G., Kim, S. O., Lim, H., and Yoo, S. E., Neuroprotective effect of (2S,3S,4R)-N''-cyano-N-(6-amino-3,4-dihydro-3-hydroxy-2-methyl-2-dimethoxymethyl-2H-benzopyran-4-yl)-N'-benzylguanidine (KR-31378), a benzopyran analog, against focal ischemic brain damage in rats. J. Pharmacol. Exp. Ther., 301, 210-216 (2002) https://doi.org/10.1124/jpet.301.1.210
  12. Jung, Y. S., Ryu, B. R., Lee, B. K., Mook-Jung, I. H., Kim, S. U., Lee, S. H., Baik, E. J., and Moon, C. H., Role for PKC-$\varepsilon$ in neuronal death induced by oxidative stress. Biochem. Biophys. Res. Commun., 320, 789-794 (2004) https://doi.org/10.1016/j.bbrc.2004.05.217
  13. Kim, K. Y., Kim, B. G., Kim, S. O., Yoo, S. E., and Hong, K. W., KR 31378, a potent antioxidant, inhibits apoptotic death of A7r5 cells. Korean J. Physiol. Pharmacol., 5, 381-388 (2001)
  14. Kim, S. O., Cho, I. S., Gu, H. K., Lee, D. H., Lim, H., and Yoo, S. E., KR-31378 protects neurons from ischemiareperfusion brain injury by attenuating lipid peroxidation and glutathione loss. Eur. J. Pharmacol., 487, 81-91 (2004) https://doi.org/10.1016/j.ejphar.2003.12.037
  15. Korantzopoulos, P., Galaris, D., Papaioannides, D., and Siogas, K., The possible role of oxidative stress in heart failure and the potential of antioxidant intervention. Med. Sci. Monit., 9, RA140-RA145 (2003)
  16. Kumar, D. and Jugdutt, B. I., Apoptosis and oxidants in the heart. J. Lab. Clin. Med., 142, 288-297 (2003) https://doi.org/10.1016/S0022-2143(03)00148-3
  17. Langer, C., Jurgensmeier, J. M., and Bauer, G., Reactive oxygen species act at both TGF-$\beta$-dependent and - independent steps during induction of apoptosis of transformed cells by normal cells. Exp. Cell Res., 222, 117- 124 (1996) https://doi.org/10.1006/excr.1996.0015
  18. Lee, B. H., Seo, H. W., Yoo, S. E., Kim, S. O., Lim, H., and Shin, H. S., Differential action of KR-31378, a novel $K^{+}$ channel activator, on cardioprotection and hemodynamic effects. Drug Dev. Res., 54, 182-190 (2001) https://doi.org/10.1002/ddr.10028
  19. MacLellan, W. R. and Schneider, M. D., Death by design. Circ. Res., 81, 137-144 (1997) https://doi.org/10.1161/01.RES.81.2.137
  20. Meister, A., Glutathione, ascorbate, and cellular protection. Cancer. Res., 54, 1969s-1975s (1994)
  21. Molyneux, C. A., Glyn, M. C., and Ward, B. J., Oxidative stress and cardiac microvascular structure in ischemia and reperfusion: the protective effect of antioxidant. Microvasc. Res., 64, 265-277 (2002) https://doi.org/10.1006/mvre.2002.2419
  22. Moon, C. H., Jung, Y. S., Kim, M. H., Park, R. M., Lee, S. H., and Baik, E. J., Protein kinase C inhibitors attenuate protective effect of high glucose against hypoxic injury in H9c2 cardiac cells. Jpn. J. Physiol., 50, 645-649 (2000) https://doi.org/10.2170/jjphysiol.50.645
  23. Moon, C. H., Kim, M. Y., Kim, M. J., Kim, M. H., Lee, S., Yi, K. Y., Yoo, S. E., Lee, D. H., Lim, H., Kim, H. S., Lee, S. H., Baik, E. J., and Jung, Y. S., KR-31378, a novel benzopyran analog, attenuates hypoxia-induced cell death via mitochondrial KATP channel and protein kinase C-epsilon in heart-derived H9c2 cells. Eur. J. Pharmacol., 506, 27-35 (2004) https://doi.org/10.1016/j.ejphar.2004.10.037
  24. Singal, P. K., Khaper, N., Palace, V., and Kumar, D., The role of oxidative stress in the genesis of heart disease. Cardiovasc. Res., 40, 426-432 (1998) https://doi.org/10.1016/S0008-6363(98)00244-2
  25. Yoo, S. E., Yi, K. Y., Suh, J., Kim, N., Lee, B. H., Seo, H. W., Kim, S. O., Lee, D. H., Lim, H., and Shin, H. S., A novel anti-ischemic ATP-sensitive$K^{+}$ channel ($K_{ATP}$) opener without vasorelaxation: N-(6-aminobenzopyranyl)-N'-benzyl-N'-cyanoguanidine analogue. J. Med. Chem., 44, 4207- 4215 (2001) https://doi.org/10.1021/jm010183f
  26. Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L., and Sollott, S. L., Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med., 192, 1001-1014 (2000) https://doi.org/10.1084/jem.192.7.1001