DOI QR코드

DOI QR Code

ON C-BOCHNER CURVATURE TENSOR OF A CONTACT METRIC MANIFOLD

  • KIM, JEONG-SIK (DEPRTMENT OF MATHEMATICS AND MATHEMATICAL INFORMATION YOSU NATIONAL UNIVERSITY) ;
  • TRIPATHI MUKUT MANI (DEPARTMENT OF MATHEMATICS AND ASTRONOMY, LUCKNOW UNIVERSITY) ;
  • CHOI, JAE-DONG (DEPARTMENT OF MATHEMATICS, KOREA AIR FORCE ACADEMY)
  • Published : 2005.11.01

Abstract

We prove that a (k, $\mu$)-manifold with vanishing E­Bochner curvature tensor is a Sasakian manifold. Several interesting corollaries of this result are drawn. Non-Sasakian (k, $\mu$)­manifolds with C-Bochner curvature tensor B satisfying B $(\xi,\;X)\;\cdot$ S = 0, where S is the Ricci tensor, are classified. N(K)-contact metric manifolds $M^{2n+1}$, satisfying B $(\xi,\;X)\;\cdot$ R = 0 or B $(\xi,\;X)\;\cdot$ B = 0 are classified and studied.

Keywords

References

  1. D. E. Blair, On the geometric meaning of the Bochner tensor, Geom. Dedicata 4 (1975), 33-38
  2. D. E. Blair, Two remarks on contact metric structures, Tohoku Math. J. 29 (1977), 319-324 https://doi.org/10.2748/tmj/1178240602
  3. , Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203. Birkhauser Boston, Inc., Boston, MA, 2002
  4. D. E. Blair, T. Koufogiorgos, and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), no. 1-3, 189-214 https://doi.org/10.1007/BF02761646
  5. S. Bochner, Curvature and Betti numbers, Ann. of Math. 50 (1949), no. 2, 77-93 https://doi.org/10.2307/1969353
  6. W. M. Boothby and H. C.Wang, On contact manifolds, Ann. of Math. 68 (1958), 721-734 https://doi.org/10.2307/1970165
  7. H. Endo, On K-contact Riemannian manifolds with vanishing E-contact Bochner curvature tensor, Colloq. Math. 62 (1991), no. 2, 293-297 https://doi.org/10.4064/cm-62-2-293-297
  8. H. Endo, On the curvature tensor fields of a type of contact metric manifolds and of its certain submanifolds, Publ. Math. Debrecen 48 (1996), no. 3-4, 253-269
  9. T. Koufogiorgos, Contact Riemannian manifolds with constant $\varphi$-sectional curvature, Tokyo J. Math. 20 (1997), no. 1, 13-22 https://doi.org/10.3836/tjm/1270042394
  10. M. Matsumoto and G. Chuman, On the C-Bochner curvature tensor, TRU Math. 5 (1969), 21-30
  11. M. Okumura, Some remarks on space with a certain contact structure, Tohoku Math. J. 14 (1962), 135-145 https://doi.org/10.2748/tmj/1178244168
  12. B. J. Papantoniou, Contact Riemannian manifolds satisfying R($\xi$,X)$\cdot$R = 0 and ${\xi}{\in}(k,\mu)$-nullity distribution, Yokohama Math. J. 40 (1993), no. 2, 149-161
  13. G. Pathak, U. C. De, and Y.-H. Kim, Contact manifolds with C-Bochner curvature tensor, Bull. Calcutta Math. Soc. 96 (2004), no. 1, 45-50
  14. D. Perrone, Contact Riemannian manifolds satisfying R(X, $\xi){\cdot}$R = 0, Yokohama Math. J. 39 (1992), no. 2, 141-149
  15. S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J. 40 (1988), 441-448 https://doi.org/10.2748/tmj/1178227985
  16. Y. Tashiro, On contact structures of tangent sphere bundles, Tohoku Math. J. 21 (1969), 117-143 https://doi.org/10.2748/tmj/1178243040

Cited by

  1. A Study on Conservative C-Bochner Curvature Tensor in K-Contact and Kenmotsu Manifolds Admitting Semisymmetric Metric Connection vol.2012, 2012, https://doi.org/10.5402/2012/709243
  2. A Study on Ricci Solitons in Kenmotsu Manifolds vol.2013, 2013, https://doi.org/10.1155/2013/412593
  3. E-Bochner curvature tensor on generalized Sasakian space forms vol.354, pp.8, 2016, https://doi.org/10.1016/j.crma.2015.10.027
  4. Pinching Theorems for a Vanishing C-Bochner Curvature Tensor vol.6, pp.11, 2018, https://doi.org/10.3390/math6110231