References
- L. Cesari, Asymptotic Behavior and Stability Properties in Ordinary Differential Equations, Academic Press, Springer-Verlag, 1963
-
S. K. Choi and N. J. Koo, Variationally stable difference systems by
$n_\infty$ - similarity, J. Math. Anal. Appl. 249 (2000), 553-568 https://doi.org/10.1006/jmaa.2000.6910 - S. K. Choi, N. J. Koo, and H. S. Ryu, Asymptotic equivalence between two difference systems, Computers Math. Appl. 45 (2003), 1327-1337 https://doi.org/10.1016/S0898-1221(03)00106-8
-
R. Conti, Sulla
$t_\infty$ -similitudine tra matrici e l'equivalenza asintotica dei sistemi differenziali lineari, Rivista di Mat. Univ. Parma 8 (1957), 43-47 - W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath and Company, Boston, 1965
-
G. A. Hewer, Stability properites of the equations of first variation by
$t_\infty$ - similarity, J. Math. Anal. Appl. 41 (1973), 336-344 https://doi.org/10.1016/0022-247X(73)90209-6 - V. Lakshmikantham and S. Leela, Differential and Integral Inequalites with Theory and Applications, Academic Press, New York and London, 1969
- M. Pinto, Asymptotic integration of a system resulting from the perturbation of an h-system, J. Math. Anal. Appl. 131 (1985), 194-216 https://doi.org/10.1063/1.35325
-
W. F. Trench, On
$t_\infty$ -quasisimilarity of linear systems, Ann. Mat. Pura Appl. 142 (1985), 297-302
Cited by
- ASYMPTOTIC EQUIVALENCE FOR LINEAR DIFFERENTIAL SYSTEMS vol.26, pp.1, 2011, https://doi.org/10.4134/CKMS.2011.26.1.037
- ASYMPTOTIC EQUIVALENCE BETWEEN TWO LINEAR DYNAMIC SYSTEMS ON TIME SCALES vol.51, pp.4, 2014, https://doi.org/10.4134/BKMS.2014.51.4.1075