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CORNER SINGULARITY AT THE MULTIPLE
JUNCTION OF THE ELECTRIC TRANSMISSION

Hi JuN CHOE, KYONG YOP PARK, AND AYOUNG SOHN

ABSTRACT. We consider the several plane sector domains which
are bonded together along common edges with vertex at the origin.
Such' domains appear in electric conducting problem with multi-
layered heterogeneous media. Our aim is to give a structure theo-
rem of the singularities of the electric field at the corner. Also, we
provide a regularity theorem for the electric field.

1. Introduction

There have been many studies for the elliptic boundary value prob-
lems in non-smooth domains Q C R"™ including Lipschitz domain. In
this note, we are interested particularly in domain with corner points in
the plane for electric field. Many results about cornered domains can be
found in the works by Kondrat’ev|4] and Grisvard[3]. In the monogra-
phy [3] by Grisvard he proved the existence of the solutions of boundary
value problems for the Laplace operator in a plane domain with corner
like a polygon. More precisely stating, under the Mellin transform in
the polar coordinate for the polygonal domain, Poisson type problem
for Laplace operator reduces to two point boundary value problem for
each frequency. With the regularity condition on the function spaces,
the solution of the boundary value problem can be decomposed into a
regular part and a linear combination of the singular functions. Here,
the regular part has the maximal regularity allowed by the right side of
Av = f. In addition, the nature of singularity does not depend on the
forcing term of the differential equation but only on the domain and the
differential operators.
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In particular, we consider the several plane sector domains which
are bonded together along common edges with vertex at the origin.
The problem arises in electric conducting problems with multi-layered
heterogeneous media. In this note, our aim is to give a structure theorem
of the singularities of the solution at the corner. So, we may use the
method of Kondrat’ev like in [4] and [3] in a local sense.

On the other hand, due to the importance in engineering, there are
several studies on transmission problem. In 1990, in the case of the
system of linear elasticity for isotropic material, Reitich[6] studied two
dimensional linear elasticity in a domain Q = Q; UT'U{23 with a jump in
the elasticity coefficients across I’ where ; C {(r,6)|r > 0,0 < 6 < wy},
Qe C {(r,0)|r > 0,~ws < 0 < 0} satisfying 0 < wy,we < mandI' =
0 N OQy C {6 = 0}. In this case, it is observed the singular behavior
of the solution near the corner point because of the lack of regularity and
transmission condition. However, he only treated the case of w; = wa
and it turns out a model case in our problem.

In section 2, we find a variational solution and a priori WP regularity
estimate by forcing term. Then, we find singular expansion near corner
point. The geometric picture of the domain is the following:

Tn

We consider a sequence of angles 0 < ) < 03 < --- < 6, < 27 and
we let the domain Q = U;Q; with Q; = {(r,6)|r > 0,6,1 < 8 < 6;},
Ty = {0 =0},I'; = {# = 6;}. The following function spaces are in use:

2@ ={us sy = |u|pdx)‘l’ <o},

1
Wk () ={u Nl lwerg) = (/ﬂ 3 |V°‘u|pdm>p < oo},

o<k

where « is multi-index and Einstein summation convention is used.
When p = 2, we let H*(Q) = Wk2(Q).
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We consider the Laplace equation of Poisson type and the correspond-

ing transmission problem: for f* € LP({};),i=1,--- ,n
Ayt = f in €,
i i+1
/ﬁ:g—; = Kit1 8‘5W on Ty,
(1.1) (T){ v = uit? on T,
ul=0 on I,
u =0 on I',.

We assume that x; is positive for the well-posedness and v; is the out-
ward unit normal vector on T'; for Q;. To solve (T), we are to find
a priori bounds for solutions in W2P(Q) by the LP norm of force f.
We shall prove the inequality ||ullw2sq) < || fl|rr(q) for any solution
u € W2P(Q), for some constant ¢ depending on 2, p. As the second step
in solving (T), we reduce (T) to simple case. To do this process, we
use the polar coordinate(see (2.2)) and the Fourier transform(see (2.3)).
Then, we solve the two point boundary value problem for the case of
homogeneous equation in each eigenvalue. Then, complying with the in-
homogeneous forcing term, we get a characterization as the followings:
If w € L9 is a solution of (1.1), then we have

U =T+ Xembm, where Te WP(Q).

Also, we find an explicit formula for eigenvalues and eigenfunction basis
{¢m} in section 3.

2. W2P Estimate

The first step in solving (T) is the proof of the existence using the
variational method in Hilbert space framework. We suppose f € L(f)
and let u € H3(U;T; UQ) be the minimizer of

Z/%lVU(w)IQ + f(z)u(z) d.
[ Q

If we let u* = uxgq, and f* = fxq, with the characteristic function xg,
for i = 1,--- ,n, then u’ satisfy our transmission problem (T).

It is important to know W?2P regularity holds in cornered domain like
free space when there is no singular zero of characteristic equation. The
following theorem states H? estimate in two dimension.
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THEOREM 2.1. Suppose f € L*(Q)(NC*®() and u € H*(U;T; UQ)
is a solution to (T). Then there is a constant ¢ such that

ullzrz@y < e (1fllz2) + lull} 20) -

i+1
Proof. We assume f is smooth. Since u* = u*T! on T, %‘j_ = 61;% on

I';, where 7 is the tangent vector along I';. With suitable rotation, we
assume I'; is the positive z-axis. Furthermore if we take a test function
¢, supported in £2; U ;17 UT;, we obtain

/(’iivu ) v¢m + f¢x) + / (K'i+lvu * v¢x + f¢x) =0

Q; Qi1

Integrating by parts we have

/ (keVia - Vo + fo8) + / (Kis1Viig - V + fudp) = 0

Q; Qi1
and
Oul Quitl
[ rigzods - [ rngmodo
Q; 041
- [ibu= et~ [ (rindu= s =o.
Q; Qi1
From
8u outtl ,
Ki — Ki+1 / ¢d /D Iiz Iﬁi+1u;+1)¢ = 0,
59 811

we get Kiug, = m_l_lugl on I';. Hence, from the integration by parts,
we have

_ i, , i+1, i+1 , i1, i+l _
/ u, uyy Ki / Ugy Ugy + Kit1 / Ugp Uy — Kitl / Uy Ugy =0

2 Q Qi1 Qit1

2 2
mi/umuyy—l-mﬂ / Uy Uyy =f§,~/umy—|—ﬁ,~+1 / Ugy-
Q;

Q; Qi1 Qit1

and
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Then, it follows that

K/i/lﬂuil%ﬁ_g_l / lAuH_l]Q
Q; Q

i+1

— ki / (uhe)? + (ud )2 + 2ui i )

b kin / () + (i) 4 2uit ity

Qip1

= K / ((ule)? + (uly)? +2(ui,)?)

Q;

i [ (W (1) + 20502
Qip1
Therefore, we have

ni/lv2ulz+ni+1 / V22 :ﬁi/|Au\2+ni+1 / | Aul?.
Q; Qiy1 Q; Q

i1
Considering all the interfaces I';, we conclude our proof. 0

From now on we consider the W?P estimate. We shall now derive the
inequality ||ullzpa < C{lIfllopa + llullipa} for 1 <p < oo, p# 2. We
consider some weighted spaces similar to those introduced by [3]. We
denote by p(x,y) the distance from the point (z,y) to the origin which
is the corner point of 2. We denote by FP*(£2) the space of all function
u defined in 2 such that pl* =" Dy € L,(Q) for all |a| < m. Obviously
we define a Banach space norm on P;*(2) by letting

lullep@y = 3 167" Dullo e
a|<m
By using the above weighted space, we find a priori bound of the solution
u in P*(€)) satisfying (T'). By localization we assume u has a compact

support and for convenience, we let v be a function satisfying Av = ¢
for some g satisfying

(2-1) HgHO,p,Q < K(”fHO,p,Q + HUHLP,Q)

with the same boundary conditions and compact support. We set w(t, 9)
= e~ (2/ty (). Obviously, the polar coordinate is used and r is
replaced by ef. Then w is a solution of a boundary value problem in the
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n-fold strip B = R x U;:Ol(ﬁi, 0;+1) and under this transformation the
equation is

’LUtt+’wga+ wt—l-—gw—k in B,
w'(t,60) = 0
(2.2) (A) "(t 0,) = .
w(t, 0;) = w""l(t 9 i),
1+1

Iii%r—(t 0;) = Iﬁ:H.l 89 (t,6;),

where k = k(t,0) = e~(2/Dt{e2g(e!*0)}. After performing the Fourier
transform with respect to t on (A) we get

gy + (b + iak — ) = k,
’lfJ( ,60) =0,

(2.3) (A) ¢ @™(¢,0,) =0,
W€, 0;) = D, 6),
(9

I (€,0;) = Kip1 285 (€, 65),

where a = 4/q, b = 4/¢%.

A fundamental solution to (A) is the couple of functions (h1(6), ha(8)) =
(sin pB, cos pf) where p = (b + ia& — £2)1/2 for £ € R. The problem (A)
is well-defined if and only if the homogeneous solution is trivial. Thus
we are to consider the homogeneous solution. We let the homogeneous
solution to (A) be

wt = cithi + cighy for 6; < 6 < 6;4;.

The boundary condition is fulfilled if and only if for i =1, ..., n,
(2.4)
ci1 sin( pby) + c12 cos( pby) = 0,
cn1 sin( pbr) + cna cos( pby) =0,
cirsin( pb;) + ci2 cos( pb;) = c(iy1)1 sin( pbi) + c(ig1)2 cos( pdi),
ci1 cos( pb;) — cizsin( pb;) = aic(i11)1 cos( pdi) — cic(iy1y2 sin( pb;),
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Kit

where o; = . Since this is a linear system in (¢;1, ¢;2), we obtain a
matrix form such that

sin pfy cos pfo 0 0 0 0 c11

sin pfy cos pfy — sin pfy — cos pby o] 0 c12

cospfy  —sinph; —aqcosphy oy sinpb 0 0 c21

0 0 sin pfa cos pfa 0 Cco2

en

0 0 0 sin(pbr) cos{pbn) Cn2
0
0
0
= 0
0
0

Thus if the coefficient matrix is nonsingular, there is not nontrivial solu-
tion. Hence we are interested in the determinant of the above coefficient
matrix My(,4q) for n > 1 and we get a nontrivial solution if the deter-
minant doesn’t vanish.

We let Dy, be the determinant of the matrix Ms(,11). Note that
we have D1(pbp, pf1) = —sin(p(f1 — 0p)). Then, with D;, we get the
recurrence relation for the determinant D,, as follows:

Dn(;0807 o ,99n>
(2.5) = — -1 €08(p(0n, — On—1))Drn—1(pbo, - -+ , pOn—1)

. T
— sin(p(0 — On-1)) Do (0o, pn-2, pns + %)

for n > 2. If we define the determinant vector H, in phase shift by

T T
Hn: <Dn(p90, apen)aDn(pHC)v"' 79(@1‘*‘5)) s
we obtain a recurrence vector relation

_ [ —on-1cos(p(Op — On_1)), —sin(p(6n —bn-1))
Hy = ( o1 sin(p(fy — On-1)), —cos(p(fn —Bn 1)) )
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with Hy = (—sin(p(8; — 6p)), — cos(p(81 — 6p)))”. We know that

sin(pf) i . cos(pf) 1
e, e~ g and i =g =g

Thus, with straightforward computation, we find that D,, behaves like
i (:21)” elélbn (a1 +1) - - (1 + 1) as |€| goes to infinity. Hence there is
no zero of D, near infinity. Since D, is analytic as a function of £, each
zero is isolated and there are only a finite number of zeros of D,, on the
real line.

REMARK. When there are only two layers, namely n = 2, we get the
determinant is equal to the following

sin(p(62 — 01)) cos(p(61 — 6p)) + a1 cos(p(f2 — 61)) sin(p(6; — b)),

where p = (4/p? + i(4/p)€ — £€2)V/2 for ¢ € R. So the problem (A) is
well-posed unless the above determinant vanishes.

To handle the inhomogeneous term in (A), we let 9 be the solution
to
[ Ohet b tiag €)=,
61(57 91'—1) = O’

in 6,_1 < @ < 6;. From the Green function expression, we get

o) . 9; 00
[ weopase [ moar[ i1t 2Pa e,
—00 Qi1 —00
where M is computed from the Green function as Lemma 4.2.1.3 in [3].
If we let é = w0 — ¥, then € is a solution to
(2.7)
éoo + p?é =0,
él (ga 90) = Oa
(B*){ €(&,0,) =0,
él(&a 01) = éi+1 (é.a az)a

9(¢,0;) + %(f,ai) = ai%(ﬁ, 6;) + aia%:l(f,az’)-

REMARK. When there are only two layers, namely, n=2, we find the
solution € such that

(2.8) é:{ él = Asinpd for 0<6<6,

é2=ﬁ%sinp(9—92) for 61 <0 <0y,
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where A = {15 (61) — 25 (601)}/{pcos pbs — pa 281 cos p(6; —

62)}.

THEOREM 2.2. Suppose D,, doesn’t vanish for all £ € R with p =
(b+iaf — &2)1/2 then the solution é in the cone ) satisfies

llellwzr) < cllvllwary < cllfllze@)

where e = F~1(é). Here, F~! is the inverse Fourier transform.

Proof. We refer [3](p.191) for the related proof. O

Therefore with the W2 estimates of v and e, we obtain W?2P estimate
of w and consequently Pg estimate of u.

THEOREM 2.3. Suppose there is no real root of D,, which is defined
by (2.5). Then, there exists a constant ¢ such that

lullp2() < e{lIfllop + [Jul

for all u € P2(2) which is solution to (T) under the well-posed condition
of (T).

1,19,9}

3. Singular expansion

We are interested in the structure of u satisfying (1.1), which is L?
class. In particular, the behavior of u near the corner point is our main
concern. Using separation of variables in polar coordinates we are able to
derive precise expansions of the solution near the corner. Suppose L¢ =
(3, kixa,¢')!, where x4 is the characteristic function supported on A.
Then, L is self-adjoint and positive definite operator on H}(£2) with the

norm ||ullL = /3, #i||Vul[2,. Hence, all the eigenvalues are positive

real numbers and there is a nontrivial solution ¢y, for the eigenvalue \2,
to

(ki(ém)")' +>\72n¢in =0 in

P (f0) = ge ) =

B (03) = 5130,

a 8¢

% (9,) = 0, 255 (6).

We can compute the eigenvalues A, as in section 2. We let D, (X, 0, - - -,
An)) be the characteristic function corresponding to {6, --,60,}. We

(3.1) (E)
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have Di(X, 00, A1) = — sin()\ﬁ\/—%ﬂ). Then we get the recurrence relation
for the characteristic function D,, as follows:
D’n(>‘a 90a tt )gn)
Kn

0, — 0n—1
- n Un-1 _ oo B, _
1 CcOoS ()\ \/I_’\Z—; > D, 1()‘7007 s Un 1)

. en - 0n——1 s
— sin <)\W Dy ()\,90, oy On2,0n—1 + 5)

for n > 2. If we define the determinant vector Hj, in phase shift by

H, = (Dn()\,HO,--- ,6,), Dn ()\,00,--- O+ g))T

we obtain a recurrence vector relation

-/ cos()\en‘en‘l), —sin()\———e"—en“l)
Hn - ( - ) o Hn—l

Kn M n—Un— 0n—0n_
Y sin(A2 \/i_n L), —cos()\w———M L)

with i = (= sin(\478), ~ cos(\78)).

REMARK. When there are only two layers, namely n = 2, we get the
characteristic function is equal to the following:

sin ()\02 — 01) cos <)\01 — 00) + @cos ()\02 — 91) sin <)\01 _ 00)
JR2 NG k1 JR2 VR

For the given eigenvalue \,,, the eigenfunction ¢, is

(3.2)
oL () = Asin()\m\/%) for 0<6 <6,
dm(0) = Asin(Am —A)

P (0) = —— L= sin(An 222) for 61 < 6 < 6

sin(Am Ve )

for a constant A.

In the first layer, ¢L (6) = csin()\mv%) for a constant c and ¢¢, can
be considered as a solution to initial value problem instead of two point
boundary value problem in each layer. Therefore, from the uniqueness
of the initial value problem, we find any two solutions are linearly de-
pendent.

Welet J = {¢ € H1(90,9n) : ¢|[95,9i+1] = ¢Z(9) € H2(0i,91+1), (1)1(0) =
. . i i+1
0, ¢"(6n) = 0, ¢*(6;) = ¢*+1(6:), 5 %-(0:) = ki1 255 (6:)}. We define
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the inner product J by

"k [P 09Oy
<‘W>:ZE aeaeda
1=1

Then, with normalization, we have that {¢,,} is an orthonormal basis

of J.

PROPOSITION 3.1. Suppose that v € C*((0, R) x U, (0;-1,6;)) is a

2 . . . s, .
solution to 74—1 gﬁ +% 293 = 0 and satisfies the transmission condition.

We let d,, = max; <2 \/_ Ifv e LP(U2_8;), we have
. A
v(re??) = 2>)1 amrﬁqﬁm(ﬂ)
m
(3.3) -

3

+ 2 Bur VFiém(d) for 0;_1<6<6;.
0<dm<2/p

Proof. We note 0 can not be an eigenvalue since k; > 0. Since the
sequence ¢m, m = 1,2, ... is a basis of J, we have that for a fixed r

’9) = Z Um (1) pm (60), where vy, (1) =< U(Tew),(bm(e) >

m>1
Since v is smooth, we have for ;1 < 0 < 6;
" ]. I3 )\%n/
’Um-{—;’l)m——/;r—Q’Um(T'):O, 0<r<R

)

Am _2m
and accordingly we obtain v, (r) = amr V= + B,,r vFi. Therefore

[um ()P < cZ/ #Y|Pdo

/|vm |prdr<c// O Prdodr.
o

This implies 8, = 0 when d,,, > 2/p. O

and

REMARK. Roughly speaking, we compute ), from the characteris-
tic equation and then find the range of A\, such that the second term
in the right side of (3.3) does not belong to W?P. A singular mode
corresponding to such a A can not appear in decomposition because of
regularity.

From the above result, we get the main theorem.
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THEOREM 3.2. Assume ) is a n-fold plane sector with a corner point
at the origin like a figure. Let u € LP be a solution of (1.1). Then we
have

u="1u+ by cmém, where Te W2P(Q),
m>1,0<dm<2/p

where ¢, is a constant and ¢y, is given in the above proposition 3.1.
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