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KEY EXCHANGE PROTOCOL USING
MATRIX ALGEBRAS AND ITS ANALYSIS

S00JIN CHO*, KIL-CHAN Ha,
YouNG-ONE KiM*, AND DONGHO MOON

ABSTRACT. A key exchange protocol using commutative subalge-
bras of a full matrix algebra is considered. The security of the proto-
col depends on the difficulty of solving matrix equations XRY = T,
with given matrices R and 7. We give a polynomial time algorithm
to solve X RY = T for the choice of certain types of subalgebras. We
also compare the efficiency of the protocol with the Diffie-Hellman

key exchange protocol on the key computation time and the key
size.

1. Introduction

Many key exchange protocols have been proposed [2, 3, 14, 16, 19]
since the Diffie-Hellman protocol was proposed in [5], which is most pop-
ularly used. One of them is the protocol using commutative subsemi-
groups of some noncommutative semigroup by Sidelnikov, Cherepnev
and Yashchenko[4] which can be described as follows:

Let H and R be commutative subsemigroups of a noncommutative
semigroup (G, ), and o be a fixed element of G. Alice chooses hy € H,
74 € R and send h4 o %74 to Bob, while Bob chooses hg € H, rg € R
and send hgxo xrp to Alice. The shared key is hpx (haxo*xT4)xTB =
hax(hg o *xrg) *rs. The security of the protocol depends on the
difficulty of the factorlzatlon Write an element g € G as a product
zxoxy for x € H RS R where H 2 H and R D R are commutative
subsemigroups of G. If G is a groups rather than a semigroup, then
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the factorization problem is to find z,y satisfying z « g = 0 xy and the
inverse of x.

In [4], the case when G is a cyclic subgroup of a finite general linear
group is considered, and the analysis shows that this case is not secure
since the equation x x g = o x y becomes a system of linear equations.

In this article, we consider a key exchange protocol using matrix
algebras over finite fields, not just a multiplicative group of nonsingular
matrices. We started our work as an attempt to find a more efficient
key exchange protocol on the key computation time than Diffie-Hellman
type, and came up with a protocol using matrix algebras. We, however,
found out that the basic idea of construction is exactly the same as
that of Sidelnikov et al.[4], whereas we also realized that there are many
differences that should be considered. Since we consider the full matriz
algebra rather than the general linear group, matrices do not have to
be nonsingular and this makes the analysis of the protocol with respect
to the man-in-the-middle attack complicated. In our case, the problem
is to solve the matrix equation of X,Y given by XRY = T, while in
[4], the equation is given by RY = X~1T. Note that the equations are
quadratic in our case.

Even though the main part of the article is on the analysis, we made
efforts to examine the protocol in as many aspects as possible. We con-
sider possible ways to choose commutative subalgebras, analysis with
respect to the man-in-the-middle attack, and we also compare the effi-
ciency of the protocol with that of Diffie-Hellman type protocol.

We should mention that the number of solutions to the matrix equa-
tion XRY = T with predetermined values of rank(R), rank(7") has been
known [10, 11, 20]. Our case, however, has more restriction than general
matrix equations since X and Y must be in certain commutative subal-
gebras. It also should be noted that we may use known methods using
algorithms to find Grébner basis of quadratic equations(polynomials)
[6, 7] to do the analysis. However, the complexity of those algorithms
are not explicitly calculated, and in general it is expected to be expo-
nential. A purpose of this article is to find a polynomial time algorithm
to solve XRY =T, when X and Y are of certain type of matrices using
properties of commutative matrix subalgebras. For that purpose, we use
Jordan canonical forms of matrices, for which we must extend the base
field Fy to the splitting field of characteristic polynomials of generators
of commutative subalgebras. Thus, without the assumption that gen-
erators are given in their Jordan forms, we may not conclude that the
algorithm has polynomial time complexity. In that sense, our analysis
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does not show the insecurity of the protocol in full, but it tells us about
some cases that should be avoided when one wants to use the protocol.

We describe the protocol using matrix algebras and consider some
practical issues on the protocol in section 2. Even though the basic
idea is exactly the same as that of Sidelnikov et. al., there are some
practical issues that should be considered when the full matrix algebra
is used. In section 3, we restate the man-in-the-middle attack for our
case and review some preliminaries that will be needed to analyze our
protocol. In section 4, we formulate problems to be solved to analyze
the protocol. In section 5, a polynomial time algorithm is given to solve
XRY =T when two commutative subalgebras are cyclic. In section 6,
we consider the analysis of more general type and suggest a direction
to solve the system, but we were not able to do the full analysis. In
the final section, we compare the efficiency of the protocol and Diffie-
Hellman type protocol, especially on the key computation time and key
size. Then we conclude with several remarks.

2. The protocol

Let Fy be the Galois field of size ¢, and M, (¢) be the matrix algebra
of n xn matrices over F;. The protocol relies on the choice of two subsets
81,89 of My(q), the algebra of all n X n matrices over Fg, which satisfy
the following conditions:

(*) For any Ay, B; € 8§ and Ay, By €8y, AyBy = B1A; and
AsBs = BjA,.
(**) For A1 € 81 and A5 € 82, A4, 75 AgAq.

The following is the description of the protocol we are considering,
that is exactly the same protocol of Sidelnikov, et. al. except that we use
a matrix algebra rather than a semigroup. In the following, we assume
that Si, S are subsets of My, (q) satisfying (x) and (sx).

Key exchange protocol using matrix algebras

COMMON INPUT 51,8,

OUTPUT An element in My,(q) shared between Alice and Bob.
1. Alice picks A; € 81, Ay € Ss; sends the product A; A, to Bob.
2. Bob picks By € 81, By € So; sends the product B; By to Alice.
3. Alice computes K4 = A1(B1B2)As.

4. Bob computes Kp = B1(A;A2)Bs.
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From the assumption, K4 = A;(B1B3)Ay = Bi1(A1A2)Bs = Kp;
hence Alice and Bob have computed the same value that is the shared
key. Property (x*) is essential, otherwise (A;A2)(B1B2) can be the
shared key. The main concern of the protocol is on the choice of S; and

Sa.
2.1. 81 and Sz

For a moment, let us assume that S;’s are commutative subalgebras of
M, (g). Then we may think of at least two ways of describing S;, Sz. One
is to give an explicit characterization, for example, we may use Schur
algebra(see [12, 21]) that is known to be the commutative subalgebra of
M,,(q) of the maximum possible dimension. Another is to give generators
to define S;’s. Based on our preliminary investigations, we believe that
the first way is not appropriate for the protocol from the security point
of view. Thus we assume that S;’s are given by generators commuting
with each other.

Recall that any nonzero unital subalgebra of M, (g) contains scalar
multiples of the identity matrix I,,, which commute with any matrix in
M, (q). This will cause a problem because of the condition (). Thus
we no longer may not make an assumption that S;’s are subalgebras of
M, (q). To make the condition () satisfied, we suggest that one uses
the subsets obtained by deleting the multiples of the identity matrix
from each commutative subalgebra. The probability that two arbitrarily
chosen matrices from My, (q) —{al, |« € F;} commute is p(9)/ (¢ —q)?,
where p is a polynomial in g of degree n? 4+ n (see [9]). Note that as
g or n gets larger, the probability becomes smaller for fixed n and ¢
respectively. Our calculation shows that the probability is about 0.13 x
1078 when n = 5, ¢ = 2%, For this reason, once we disregard scalar
matrices, we may disregard the possibility for two matrices from &;
and S commute. For matrices M, ..., M, € M,(q), let (M,..., M)
be the subalgebra of M, (q) generated by M;’s, that is the set of linear
sums of powers of M;’s. We finally can write down our suggestion for the
choice of S;’s: Sy = (Gy,...,Gg) — {al,|a € Fy}, So = (Ha,..., H;) —
{al, | a € F,}, where G;’s commute with each other, H;’s commute with
each other, and G;H; # H;G,; for all 4, j.

3. A possible attack and preliminaries on matrix algebras

Suppose that Alice and Bob want to share a key using the protocol
described in section 2, and they use two subsets Sy, Sy of M,,(q). Assume
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that the products A;A; and B;B; are intercepted while transmitted.
Recall that we have assumed Ay, By € 81 and As, By € Sy. Following is
the man-in-the-middle attack to our protocol.

(C) If one finds A}, A} € M,(q) such that A; A = A{ A, and Af, A)
commute with By, Bs respectively, then the shared key can be computed;

A (B1B2) A% = B1(A]AY)By = By(A142)Bs.

Note that in (C), there is no need for A, to be contained in S;,
¢ = 1,2, and finding B} and B with appropriate properties must work
also.

If one wants to analyze the protocol through the attack (C), it will
be needed to understand the structure of commutative subalgebras of
M, (q). We investigate some known results on commutative subalgebras
of My (q). We use results of this section to analyze our protocol in section
5 and section 6.

3.1. Preliminaries on commutative subalgebras of M,(q)

First, we set up some notations. For a matrix G € M,(q), let J(G)
denote the Jordan canonical form of G, that can be calculated over
the algebraic closure of F; (or the splitting field of the characteristic
polynomial of G over F,). For a subalgebra S of M,(g) or a matrix A
in M,(q), we let

Z(8) ={X € Mp(q)| XG = GX for all G € S},
Z(A) = {X € My(q)| XA = AX}.

For A € F, and (14,...,1;), a sequence of positive integers in de-
creasing order, we let Jy(v1,...,1;) denote the Jordan block with the
diagonal entry A and each small block is of size v;. For example,

A1 0 0 0
0 A 1 0 0
Ja(3,2)=1]0 0o x 0o o
0 0 0 X 1
0 0 0 0 X

We call X = (z;;), an m by n matrix, a regular upper triangular
matrix if the following conditions are satisfied;

1. ®ij =y, whenever i —j =i’ — j'.

2. 25 =0, ff min{m,n} —n+1<i—j<m-1

1 27 . . .
For example, [ 8 0 1 ] is a regular upper triangular matrix.

The following propositions can be found in [8].
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PROPOSITION 1. Z(Jx(v1,...,1)) is

X = (Bj;j)1<ii<i | Bij is an v; X v; regular upper triangular matrix }.
7)1<4,5< 3] j

PROPOSITION 2. Let A be a block diagonal matrix with diagonal
blocks Jl,. . .,Jk, where J,' = J)\i(V’ila" .,Vili), and )\i 75 )\i’ if i 75 i.
Then

Z(A) = {diag(X1,..., Xx) | X; € Z(J;) for all i = 1,...,k}.
For example, if A = diag(J),(3,2),Jx,(2,1)), A1 # A2, then elements

a b ¢ | d e
0 a b | 0 d
of Z(A) are of the form [ ’3 g } ,where a=| % 0 ¢ l 00
0 f g | » ¢
o 0 f | 0 »p

and B= ,0,b,...,2€F,.

o | o=

€ | 3 »
N | O

3.2. Cyclic subalgebras

In general, it is not easy to characterize all elements in a commutative
subalgebra of M,(q). It, however, is possible to find a pattern of the
elements of S, when S is a subalgebra of M,,(q) generated by only one
matrix (and hence commutative), if we extend the field F, so that the
Jordan form of the generator can be computed over the extension field.
We call X = (z;), an n by n matrix, a block regular upper triangular
matriz of type (u1,...,ux), g1 > +-+ > pg, if the following conditions
are satisfied;

1. Zfﬂ w; = n and X is a block matrix whose (7, j)th block size is
Bi X .

2. If i # j, (¢,7)-block is 0.

3. (i,1)-block is a regular upper triangular matrix.

4. (i,1)-block is the upper left p; x p; submatrix of (1, 1)-block.

LEMMA 3. For a matrix A € M,(q), let ﬁ'q be the splitting field of
the characteristic polynomial of A over F,, and let J(A) = P~1AP =
diag(Jx,, ..., Jx,), where the Jordan block J), is of type (pi,, - - - ’ﬂik,-)'

Ifs = (A)ﬁq is the cyclic subalgebra generated by A over Fq, then
S ={PXP'| X = diag(Xa,...,X:), where X; is a block regular

upper triangular matrix over ﬁ‘q of type (fiy, ..., 1)}
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Proof. Let A be the set on the right hand side of the equation in the
Lemma. Then A is a subalgebra of M, (F,), and Zm(A) Lo, AT e A
for every «o; € IE" Moreover, dimg (.A) = dimg (S) is the degree of the
minimal polynomlal of A. Hence, We Conclude that S=A O

For example, if P7YAP = J(A) = diag(Jy, (3, 2), 5, (2)), A1 # Ao,
then the minimal polynomial of A is of degree 5; it is (x —~ A1)3(z ~ \o)2.

Moreover, elements of (A)z are PXP~!, where x = [ X1 0 ], X1 =
q 1] X2

T ) 3 0 0

[

0 x1 x2 0 0 © " o~

0 0 « 0 o0 | and ng[ 4T J,ml,xz,xg,x4,x5€Fq.
0 z

0 0 0 =z

0 0 0 0 =z

4. Problems to be solved

Suppose that Alice and Bob use the key exchange protocol described
in section 2. In this section, we reformulate the problem that is to be
solved when someone tries to know the shared key through the attack
(C). Therefore, we assume that the product A; As that Alice sends to
Bob and BjB; that Bob sends to Alice are intercepted while transmit-
ted, and the problem to be solved is to find A} and A}, satisfying the
conditions All l2 = A1A2, AllBl = BlAll, and A/2B2 = B2A/2 We also
make a strong assumption that the Jordan form and a similarity trans-
formation matrix of each generator of S;, i = 1,2 are known. Therefore,
we work over the splitting field of characteristic polynomials of generator
matrices.

4.1. Simple cases

Suppose that §1 = (G) —{al, |a € F}, So = (H)—{al,|a € F,} for
G,H € M,(q), GH # HG. That is, each of S; and S5 is generated by
only one matrix. let F ¢ be the splitting field of characteristic polynomi-
als of G and H over F,. Moreover, let us assume that J(G) = P7IGP =
diag(Jx,, - -, Ia,) and J(H) = Q'HQ = diag(Jy4, . .., Jy,) denote Jor-
dan canonlcal forms of G and H, where P,Q and J(G), J(H) are matri-
ces over Fq, and J), is the Jordan block with respect to the eigenvalue
As. Then, by Lemma 3, we may let A = PXP~! and A} = QYQ,
where X = diag(Xy,..., Xs), Y = diag(Yy,...,Y}) with X,,Y; are block
regular upper triangular matrices of corresponding type of Jy, and J,,
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respectively. Thus, the equation to be solved is
(1) XRY =T,

where R = P71Q, T = P~1A; A>Q and X,Y are block matrices of cer-
tain form with unknown entries to be determined. One should note that
we are working over an extension field F, of F,. That is, we are consid-
ering &1 = (G)ﬁq —{al,|a € ]Fq}, Sy = (H)ﬁq — {al, | o € Fg} rather
than S; or S itself. Note that R and T are known. Hence, in general,
we have quadratic equations with (u1, + -+ + pg,) + (v1, + - + )
many variables. For example, if

M 1 0 0 0 O x1 1 0 0 0 0
0 A 0 0 0 O 0 x1 1 0 0 0
o 0o x 1 0 o0 o 0 xx 0 o0 0
J&=| 4 o o a o o |padIB=| 0 5 T L 1 o0
0 0 0 0 X 1 0 0 0 0 x2 O
0 0 0 0 0 X 0 0 0 0 0 x2
for A\;, x; € Fg, then we may let
Ty 9 0 0 0 0
0 =z 0 0 0 ©
=1l p 0 0 x1 x2 0 0
X=P"MP=| 4 ¢ o z1 0 0 |’
0 0 0 0 =3 x4
0 0 0 0 0 =3
yvi y2 y3 0 O O
0 1 v 0 0 0
g | O 0 w0 0 0
Y=Q74Q=| 4 o O va s O |
6 0 0 0 ys O
0 0 0 0 0 ya

where z;,y; are variables to be decided. ;
If we look at the equation in (1) block by block according to the size
of Jy,’s and J,,’s, then we have

(2) XsRstY; =Ts,1 <5<k, 1<t <1,

where Rg, T are the (s,t)th partitioned block of R and T. Note that
X and Y; are block regular upper triangular matrices of certain type.
Now, let us look at just one equation in (2), say the case (s,t) = (1,1),
and let Jy, and J,, be of type (p1,..., o) and (v1,...,v3). Then we
may write the equation X7 R31Y; = T11 as the system of equations

(3) Xy Ry Yo, =Tpy, 1<s<a, 1<t <, where
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r1 X2 r3 Tug v y2 Yy - Yue
0 = =2 - =z, 0 Y1 Y2 Yue—1

XILs = 0 O z1 o x“‘3_2 ’ YVj = O 0 yl o yut—Z ) Wlth
0 --- 0 0 1 o --- 0 0 Y1

Zs,Yt’s the variables to be determined, and Ry, Ty, are the corre-
sponding submatrices of Ry and T} respectively.

4.2. General cases

If the number of generators for each S;, i = 1,2, is more than one,
then unlike the cyclic case, it is not easy to characterize the elements
in ; as in Lemma 3. Note that dim(Z(S;)) need not equal to dim(S;)
anymore, and therefore we have to consider more variables than in one
generator case. We make an observation on the system: If one of the
generators of S; has at least two different eigenvalues, then we can do
the analysis for each eigenvalue separately, hence we assume that each
generator has only one eigenvalue.

Suppose that S1 = (G1,...,Gy) — {al,} and Sy = (Hi,...,Hp) —
{aln} for Gi, H; € My(q), where G;’s commute each other and H;'s
commute each other. Without loss of generality, we assume that the
Jordan canonical form J(G1) = P~'GiP is of type pi,...,u; and
J(Hy) = Q7YH1Q is of type v1,...,v. Again, we work on the split-
ting field of characteristic polynomial of G; and Hj over F;. Remember
that we are assuming that the product A;Ay that Alice sends to Bob
and B1 B, that Bob sends to Alice are intercepted, and we are looking for

1, Ay(or By, BY) such that A Ay = A} A)(or By By = B} B}). Therefore
we may let X = P_IA'IP be a matrix in Z(J(G1)) and Y = Q1ALQ
be a matrix in Z(J(H;)). Then, the system we have to solve is
(4)

XRY =T, where R = P71Q, T = P~1A;A,P,

X(P'G;P)=(P7'G;P)X foralli=2,...,g,

Y(Q1H;Q) = (Q1H;Q)Y forallj=2,...,h.

ExampLE 1. If J(G,) is of type (3,3), and J(H) is of type (2,2,2),
then we may let

r11  Zi2z T13 X1 Taz  X23 Y11 Y1z Y21 Y22 Y31 Y32

0 x11 712 0O  x91 oo 0 yi1 0 w21 0 ya;1

_ 0 0 11 0 0 r21 _ | Y41 Y42 Y51 Y52 Y6l  Ye2
X = LY =

31 %32 X33 X417 T4z 43 0 yu 0 ys1 0 ye

0 x31 x2 0 x41 z42 Y71 Y12 Ys1  Ys2 Yol Yo2

0 0 z31 O 0 x4 0 yi1 0 wys1 0 you

where x;;’s, y;;’s are variables to be decided.
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REMARK 4. If there is an evidence that X or Y is nonsingular in
(1) or (4), then equations are linear on the entries of X! and Y (or X
and Y1), Hence we only care about the case that X and Y are both
singular.

5. Analysis(cyclic subalgebras)

Note that we are assuming that the equations we derived in section 4
are solvable, and we always can find a solution of the equations by
exhaustive search. The main concern, however, is if there is a polynomial
time algorithm to find a solution of each equation. In this section, we
show that there exists a polynomial time algorithm if S;’s are cyclic
subalgebras of M,(q), under the assumption that the dimension of Fy
over IF, is reasonably small. Through the sections 5 and 6, we use ¢
in the place ¢ = Iﬁq| should be, which connote the assumption that
Jordan forms and transformation matrices are defined over the field of
q elements already.

5.1. Simplest case

As the first step, we consider the simplest case, that is an equation
from (3);

(5) X,RY, =T,
where R and T are given p X v matrices and
1 x2 X3 Ty vy Yy2 Yz - Yv
0 =z z2 - ZTp 0 wnn Y2 - Y-l
X, = 0 0 =z - zu2 Y, = 0 0 w1 - Y2
0 -+ 0 0 9z 0 - 0 0 w3

DEFINITION 5.

1. For a column vector a = [ay,...,a,)t, we let S(a) be the u x p
matrix defined as follows:

o a'i+j—1 le‘l‘JS,u’—l_]-’
(S(a))y = { 0 otherwise.

2. Let R;, 7; denote the ith column of R and T respectively, and let
R, T/ denote the jth row of R and T respectively.

- For example, if a = [1,2,3], then S(a) = [
rank(S(a)) = max{j | a; # 0}.

W N =
O W N
o oW

] . Note that
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5.2. When 7; # 0(or 7] # 0)

If 7y # 0 then ) # 0 and Y, is nonsingular.(The case that 7,; # 0
that is X, is nonsingular can be solved by the dual argument, so we only
consider the case 77 # 0.) Without loss of generality, we assume that
y1 = 1. In this case, since Y}, is nonsingular, we may write equation (5)
as

_ y—1

(6) X,R=TY, ",
vioY Y o W
0y yé ygf—l

with v;’7=| ¢ 0 % - %-2 | wherey] =1 and y; are polyno-
0 - 0 0 g

mials of 3, ..., y; of degree j — 1.
If we write u X v equations read off from the equation (6), column by
column, then we have

(7) MX =0,
where
S(Ri) -7y 0 - 0
S(R2) —-Ta T - 0
M= : : . . : ’
S(kl/) _’.T’:/ - I/—l M _:]—j-
and X = [z1,...,%4,9],--.,¥,]". Using Gaussian algorithm, we will

need O((pu + v?)ur) many multiplications to solve (7). Then, O(?)
many multiplications to find y;’s will be needed.

5.3. When 77 = 0 and Tli =0

When 77 = 0 and Zj = 0, we define two constants a, b from T as
follows:

IfT =0, then a =y and b= v.

If T # 0, then let ¢ < p and b < v be nonnegative integers that
satisfy the following conditions:

Ti=-=T=0 but Ty #0,

722---:7;:*(&?1) =0 but 7, , #0.

For each 0 < 7 < p, let f; be the function from the set of p x v
matrices to itself moving each row upward ¢ times and filling in the last
i rows by 0’s.

For each 0 < j < v, let g; be the function from the set of u x v
matrices to itself moving each column rightward j times and filling in
the first j columns by 0’s. If (a,b) # (u,v), let
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A = {(i,5)| The last a rows and the first b columns of g; f;(R)
are all zero, but the (b + 1)th column and the
(# — a)th row of g; f;(R) are not zero }.

When (a,b) = (u4,v), A is just the set of (,7)’s such that g; f;(R) =
T=0.
The following lemma is immediate from the definition.

LEMMA 6. When T = 0, A satisfies the following properties:

1. A is nonempty.
2. For (i,j) € A, ifi <4, j<j andi+j <i +j then (V,j) € A.

We say that a solution of the equation (5) is of type (4,7) if 1 =
=2 =0, 1 =---=y; =0, but z;4; # 0 and y;41 # 0. Then, we
have the following lemma.

LEMMA 7. A solution of the equation (5) is of type (i,j) for some
(6,5) € A.

Proof. If T = 0 that is (a,b) = (u,v), there is nothing to prove.
Hence we assume that T' # 0. Let a solution of the system (5) be of
type (I,J) but (I,J) ¢ A. Consider g;f1(R). Since (I,J) ¢ A, there
are two cases to be considered. The first case is that either the (b+ 1)th
column or the (1 — a)th row of g;f;(R) is zero. In this case, either the
(b + 1)th column or the (1 — a)th row of XRY is 0, but none of the
(b+ 1)th column and the (u — a)th row of T is 0. Hence this case can
not occur. The second case is that either the last a rows or the first
b columns of g;f;(R) are not all zero. Assume that the first nonzero
column of g; f;(R) is the jth column and the first nonzero entry, say ¢,
of that column is in the ¢ th row of g; f7(R), then j/ < b. It is clear that
the (¢, j)-entry of XRY is z741(ysy1 which is nonzero. Since 5/ < b
we have a contradiction. We also get a contradiction if we assume that
there is a nonzero row in the last a rows of g f;(R). This completes the
proof. O

LEMMA 8. When T # 0, A satisfies the following properties:

1. A is nonempty.

2. If (i,5) € A, then0 < i< aand 0 < j <b.

3. For (i,j) € Ajifi' <4, j' < jand i +j <i+j then (i,5') € A.
4. |A| < min{a,b} + 1 < min{y, v}.

Proof. Nonemptiness of A follows from Lemma 7, since we are as-
suming that the equation (5) has a solution. If j > b then the (b+ 1)th
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column of g; f;(R) is zero, and if i > @ then the (1 — a)th row of g; f;(R)
is zero. Hence, the second property must be satisfied. If (i, 5) # (¢, ),
i <4, 5 <jand (4,7),(7,5) € A, then either (b + 1)th column or
the (1 — a)th row of g;f;(R) is zero, which proves the third property.
The fourth property is immediate from the second and the third prop-
erties. O

Ifz; =---=x; =0and y) = --- = y; = 0 in equation (5), then
we may rewrite the equation as X LR’ Y, =T', where R’ is the lower left
(i —1) X (v — j) submatrix of R, T” is the upper right (u — i) x (v — 7)
submatrix of T and

T4l Titz o Tp Yirl  Yi2 ot U
, 0 Ziy1 - Tpa 0 Yi+1 ot Yu—1
X = : U : Y=
0 0 mip 0 0 Y1
Note that, if T = Othen 2y = --- =2, =0, y1 = --- =y; =0

with other variables arbitrary, for any (i,7) € A, will be a solution of
(5). Hence, in the next Algorithm, we only care about the case T # 0.

Because of Lemma 7, when T # 0, we may write the procedure to solve
(5) as follows;

Algorithm 1 (When T # 0)
For each (i,7) € A do

1. Letwlz---:xizO, ylz---:yj:()andyjH:l.

2. If X, R' =T'(Y"); ! is a consistent linear system, solve for x;’s and
y;’s. Then, calculate y;’s.

Enddo

End of Algorithm 1

In the above Algorithm, at most ur many linear equations of at
most (p + v) variables are solved at most |A] < min{y, v} many times.
Therefore, we have the following theorem.

THEOREM 9. Following the Algorithm 1, we can solve the equation
(5) with O(x°(logs ¢)?) many bit operations, where x = max{u,v}.

Moreover, we can count the number of solutions of X, R’ = T"(Y");!
for each (i,7) € A if it is consistent:

THEOREM 10. For a given element (i,7) € A, suppose that the cor-
responding system of linear equations X, R’ = T'(Y");! is consistent.
Then, there are ¢°~*q"~J many solutions of the equation (5) after we fix
the value y;41 as 1.
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Proof. By the definition of A, if (i,j) € A then i < a, j < b, and
p—a < p—i,v—b < v—j. Moreover, the (u— a)th row of R’ is nonzero
and the (v — b)th column from the right of R’ is nonzero, whereas the
last (@ —1) rows and the first (j — b) columns of R’ are all zero. Also, the
same is true for the matrix 7”. In this situation, the last (a — i) many x
variables and the last (b — j) many y variables may be arbitrary values.
If we write the equation X, R’ = T'(Y’);! in the form of (7), then since
at least one S(R';) is of rank 4 — a and the (v — b)th column from
the right of T” is nonzero we have at least (1 — a) + (v — b) — 1 many
linearly independent equations in (1 — a)+ (v — b) — 1 many variables by
fixing the value of y;,1 as 1. Hence if the system of linear equations is
consistent then there exists only one solution for the remaining variables

Lit1s o5 Tuti—ar Yj+25 - Yo+j—b- 0
EXAMPLE 2. Suppose that y =v =5 and

11 1 1 1 0 06 0 8 24
0 2 2 2 2 00 0 3 9
R=|0 3 3 3 3|, T=|0 0 0 0 0
0 0 0 4 4 000 0 0
0 0 0 5 5 00 00 O

over the field F3;, then (a,b) = (3,3) and A = {(1,2),(3,0)}.

T2 T3 T4 xrs
1 ysa us
When (i,5) = (1,2), x, = | & # % @ v | o 7 4 | and
0 0 a2 z3 0 0 1
0 0 0 x
0 2 2 0 8 24
; 0 3 3 ; 0 3 9 : s ! pfo__
F=lo00o0lT=10 05 o If we write the equation X, R =
0 0 0 0 0 0
T'(Y");! in the form of (7), then we have M|xq x3 x4 255 yh ¥4t = 0,
where
( 0 0 0 0 0 0 07
0 0 0 0 0 0 0
0 0 0 0 0 0 0
00 0 0 0 0 0
2 300 -8 0 0
3000 -3 00
M= 0 0 0 0 0 0 0
0 0 0 0 0 0 0
2 30 0 —-24 -8 0
3000 -9 -3 0
0 0 0 0O 0 0 0
Lo 0 0 © 0 0 0|

Therefore, 4, x5, y5(hence ys) can be arbitrary values and 9, 23, are
uniquely determined if the system is consistent.
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5.4. System (3)

For more general cases given by the system (3), since the system con-
sists of several equations of type (5), we basically can follow Algorithm
1 to solve each system, while we have to consider subsystems simulta-
neously. Recall that the system (3) is defined as follows:

Xu By Yo, =Ty, 1<s<a, 1<t <3, where

x1 T2 X3 Ty Y1 y2 Yz Yoy
0 1 T2 s Tpg-1 0 i y2 o Yol

X[J.s = 0 0 1 ot Tpg-2 s Yuj = 0 0 Yoo Y2 5 With
0O .-~ 0 0 1 0o -+ 0 0 Y1

Ts,y;’S the variables to be determined, and R,,.,, Tj,., are the cor-
responding submatrices of Ry; and Ti; respectively. Also, recall that
we assumed that pu; > pg > -+ > pg and v > vy > -+ > vg. We let
= p1,v=uy. Foreachsandt, X, R, ., Y., = T}, is just an equation
of type (5). Hence we can define the set A for each case indexed by s, 1,
as we did in the previous subsection, and let them Ag. When T}, ,, = 0,
we let Ag; be extended to a subset of {1,2,...,u} x {1,2,...,v} from a
subset of {1,2,...,us} x{1,2,...,14}. Take the intersection of all Ay’s
and let us call it A of the system (8). Note again that A is nonempty.

If T,,., = 0 for every s and ¢, then the corresponding solution of any
element of A will be a solution of (3). If T),,,, # 0 for some s and £,
then |A| < min{u,v}. For each (i,j) € A, f welet 21 =--- =z; =0,
th = - =y; = 0 and yj41 = 1, then for each (s,t), we obtain a
system of linear equations of z;11,...,x,, and y;42,...,,. Consider all
of these equations together as a system of linear equations with variables
Lit1, ey Ty Yj+2 oo, Yoo 1 it is consistent, then solve for the variables,
otherwise try another element of A. If we use Gaussian algorithm, we
have the following theorem.

THEOREM 11. We can solve system (3) with O(n*(3>_¢., ,ui)(zle v;)
(log, q)?) many bit operations, where n = max{u, v}.
5.5. System (2)
Recall that the system (2) is given as follows:
XsRytYi =Ty, 1 <5<k, 1<t <1,

where each equation indexed by (s,t) is an equation of type (3). Note
that X and Y; are block regular upper triangular matrices of corre-
sponding type. For each Y;, solve X RqY: = T, 1 < s < k, to have
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solutions (X7, X3, ..., Xi); corresponding to Y; (so that the first nonzero
y variable is 1). There are at most |Y;] many types of solution (spaces)
(X1,X2,...,Xk)t, depending on the type of the solution Y;, where Y; is
a |Y;| x |Y;| matrix. Now, we find an intersection of (X7, Xa,..., Xg)t's
where t varies. There are []|Y;| many such intersections to be consid-
ered and any constant multiple of (X1, Xa,...,Xk)t, t # 0, should be
considered since the first nonzero of y-variables for each Y; was fixed as
1.

Now, we may collect all the work needed, and conclude as follows,
which is the final conclusion about the cyclic subalgebra case. Note that
n is the dimension of matrices X, R, Y, and T, given in the equation
(1), which is equivalent to (2).

THEOREM 12. We can solve the system (2) with O(n5(log, q)?) many
bit operations.

6. Analysis(General cases)

In this section, we consider a special case of the most general case
given as system (4) of equations. Unlike the cyclic subalgebra case, it is
not easy to find an (polynomial time) algorithm for general cases. We
only consider a special case and exhibit a way to write the system (4)
as a system of linear equations of variables z;y;’s. Then, we suggest
a method to solve (4), without explicit calculation of the complexity,
which seems to be impossible to do in general case.

Recall that the system (4) is given by

XRY =T where R=P71Q, T = P 1A;A3P,
X(P7'G;P)= (P7'G;P)X foralli=2,...,g,
Y(Q'H;Q) = (Q'H,Q)Y forallj=2,...,h,

where S; = (G1,...,Gq) —{al,} and S = (Hi,...,Hy) — {al,}. In
the following we state some assumptions we make on the system.

1. The number of generators of the system S; is restricted to small
numbers. It is because that we can not describe the system if there
are too many generators.

2. Degrees of minimal polynomials of generators of the system are not
so small compared to n. If all the degrees of minimal polynomials
are less than d, for some fixed d, then we can do the exhaustive
search with a generator set{or basis) of the system.
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3. If one of the generators of S; has at least two different eigenvalues,
then we can do the analysis for each eigenvalue separately, hence
we assume that each generator has only one eigenvalue.

4. Let J(Gl) = J)\(,ul,,ug, s ,/Lk) and J(Hl) = JX(Vl, Vo, ,l/l).
We assume that 1 = po =+ = g, v1 =9 =--- =17 and k and
[ are relatively small compared to n. Moreover we assume that
k <[ hence p; > v;.

5. As we mentioned earlier, if either X or Y is nonsingular, then it
is easy to solve the system (4). Therefore, we assume that X and
Y are singular matrices.

Note that P7'G,P € Z(J(G1)) and Q7'H;Q € Z(J(H1)), hence
P1G;Pand Q7 'H ;@ are block matrices with regular upper triangular
blocks of size p; x p1 and v; x v respectively. Note that kuy = lv; = n,
and there are k%u; = kn many variables in X and /?v; = In many
variables in Y. We will give indices to the variables in X and Y as in
Example 1.

For a column vector a = [aq, ..., a,)t, and a partition (w1, e, - . ., i),
pi = %, of n, we divide a into a block matrix with each block size p;.
Let a; be the ith block of a. Then we let S,(a) be the p; x n matrix
defined as

Su(a) = [ S(al) S(ak) ] s
and D,(a) be the I% x = block diagonal matrix with diagonal blocks
Su(a). Then D,(a) is an n x (nk) matrix.

In the following, we rewrite the first equation in (4) in a matrix form.
Remember that R; denote the ¢th column of R. For each ¢ =1,...,1,
we let B, be the matrix given as follows

DH(R(C—l)u+1) 0 0 e 0

Du(Rc—1)v42) Du(Re—1)v+1) 0 e 0
Du(Ric—vyvtv-1) DuRc1ypgv—2) -+ Du(Rc—1yp+1) 0

D#(R(c~l)u+u) DM(R(C—»l)l/-H/-l) Tt DH(R(cvl)u+2) DH(R(C—l)V+1)

and M, be a I x [ block diagonal matrix with diagonal blocks B.
Now let
M=[ M -+ M ], X=var(Y)®var(X),

where var(Y)(var(X), respectively) is a column vector having y;; (.
respectively) as its entries in order. We also let

T = [Tlla T21, ... ,Tnl, Tlg, e ,Tn2, .. ,Tln, cen ,Tnn]t. Then, ﬁnally,
we can rewrite the first equation in (4):

(8) MX =T.
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EXAMPLE 3. As in Example 1, suppose that J(G}) is of type p =
(3,3), and J(H,) is of type v = (2,2,2), then k = 2, | = 3. If the first
column R; of R is given by [2,5,12,15,3,7]* then

2 5 12 15
Su(R1) = 5 12

0o 3 Su(R1) 0 ] ’
12 0 0 7

3
’07 ] s Du(Rl) = [ 0 SM(RI)

o o

B 0 0
Dy(Ry) 0 j{
B; = o , M= 0 B 0 .
! l: D#(R2) D#(Rl) ! [ 0 01 B :|

Moreover, 62 x (18 - 12) matrix M = [Mi Mo Msj] is given as follows:

Yiz2 Y21 Y22 Y31 Y32 Y41 Yaz Y51 Ys2  Ys1  Ye2

Y11

Dy 0 0 0 0 0 D3 [1] 0 0 0 0

D2 D1 0 0 0 0 D4 D3 0 0] 0 0
Mi= 0 0 D, O 0 0 ,My= 0 0 Ds O 0 0

0 0 D, D, 0 0 0 0 Dy D3 0 0

0 0 0 0 D, 0 0 0 0 0 D3 0

0 0 0 0 D, Dy 0 0 0 0 Dy D3

Y71 Y72 Ys1  Ys2 Y91 Ye2
Ds 0 0 0 0 0
Dg Ds O 0 0 O
Ms= 0 o Dy o o o ,where D; = D,(R;) and each y;;
0 0 Ds Ds 0 O
0 0 0 ©0 Ds 0
0 0 0 0 Ds Ds

represents y;;(var(X)), a vector of length 12. Note that each D,(R;) is
a 6 x 12 matrix.

When &7 and S are cyclic, singularity of X and Y are equivalent to
z1 = 0 and y, = 0. However, in the general case, it is more complicated,
and it is not possible to use the same method as in Section 5.

LEMMA 13. Let Y = (Y;5), 1 < 4,5 < k, be a block matrix with

Y(i—-1k+5,0  Y@i-1)k+5,2 " Y(i-1)k+5, %
0 Ya-1)k+5,1 " Yea-1)k+5, 2 -1 L.
Vi = . o ' T . Then Y is singular
0 e 0 Y(i—1)k+4,1
Y11 Ykl
. . Ye41,1 T Y2k ..
if and only if v’ = , . is singular.
Ye-1)k+1,1 " Yp2y
Proof. This is immediate from the shape of each block of Y. O

Therefore, we first may fix the values for Y’ so that Y” is singular and
then try to solve the system. Following is a well-known theorem which
gives the number of possible Y’ (see [10]).
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PROPOSITION 14. The number of k x k matrices in My(q) of rank r

H(q

i=1

k—it+1l _ )2

(¢¢ —1)

Proposition 14 tells us that there are Zf;é (q(;) [im %12)
many choices for Y’ to be singular, which is a polynomial in ¢ of degree
E(k”—l)é‘yfﬂ. Note that k is a small integer by our assumption, so it is
plausible to make arbitrary choice for Y.

Now our suggestion is to solve for the z variables first with preas-
sumed values of Y:

By assuming the values for Y’, we will have [ x n many linear equations
of z;;’s from (8), moreover the second part of system (4) gives more
linear equations of z;;’s. Since there are k x n manyz;;’s and we assume
that k <[, we can expect that z;;’s will be uniquely determined. If the
solution is not uniquely determined then we may choose arbitrary values
for free variables.

Then use values of z;;’s to solve for y;;’s using equations in (8) and
the third part of the system (4). If we obtain inconsistent system of
linear equations then try another value for free x variables. Then try
another value of Y.

The method we suggest must have exponential time complexity in
worst case, but it should work quite well for many cases, we believe.

Of course, the number of linearly independent equations(hence the
number of free x variables) depends on the shape of R and the rank of
Y’. It was not possible for us to estimate the number of free variables,
which will be the most important affecting factor on the time complexity.

7. Efficiency issues and concluding remarks

The security of Diffie-Hellman key exchange protocol relies on the dif-
ficulty of the discrete logarithm problem on the multiplicative group Fy,
where [, is the Galois field of order ¢. In Diffie-Hellman key exchange,
the bit operation complexity of computing the shared key is O((log ¢)?)
which is quite expensive for for some special instances.

For now, we do not have any evidence that the protocol using matrix
algebras is secure in terms of relative difficulty to a well known hard
problem, and do not have any proof that the protocol is breakable in
general case in polynomial time either. Even though we do not have
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full analysis of our protocol, in the following, we try to compare the key
computation complexity and the key size of Diffie-Hellman protocol and
the protocol using matrix algebras.

In Diffie-Hellman key exchange, keys are elements of Fy, the bit op-
eration complexity of computing the shared key is O((log, 9)%), and at
present, the breaking time complexity is known to be

O (eleto(1)(log 9)'/2(log, log, 9)'/2y

where c is a positive constant [18]. In our case, the keys are nxn matrices
with entries in g, and the shared key is computed by multiplying three
such matrices. Thus the key size is n2logq and the key computation
complexity is O(n(log, q)?), and the exhaustive search complexity is
O(n3(logy q)%q?) for some integer d with 2 < d < n?/2, if we make an
assumption that one knows bases of commutative algebras. One may
notice that, unlike Diffie-Hellman protocol, there are two parameters n
and ¢ which control the important features of our protocol. In Diffie-
Hellman protocol, g is usually taken to be a prime power of about 1024-
bit. With this, we may obtain the conditions for n and ¢ in our protocol
so that our protocol has advantages on the key computation time and the
key size over Diffie-Hellman type, while 280-breaking time complexity is
guaranteed with respect to the exhaustive search. If we let ¢ = 2% and
d = 2n, then we obtain the following conditions:

(9) n3x2 > 280—2nz ,

(10) nz < 210,

For example, if ¢ = 2% and n = 8, then above conditions are satisfied
and the key computation time is about 1/2' of the computation time in
Diffie-Hellman protocol, whereas the key size is about 1/2 of the key size
of Diffie-Hellman type. Moreover, if one wants to use n = 10, then ¢ can
be a number between 2* and 2'0. If a more efficient attack other than
the exhaustive search is developed, the condition (9) must be replaced
with a more restrictive one; and if the conditions were too restrictive to
have solutions, then our protocol would lose the advantages over Diffie-
Hellman type.

REMARK 15.

1. Remember that we need Jordan forms and transformation matri-
ces of the generators of S; to set up problems in Section 4. In
general, it is costly to find Jordan forms and transformation ma-
trices; due to [17], the worst case complexity is O(n'2+n?log(q)3),
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where the given matrix is in My, (q). Moreover, we need to extend
the base field to to the splitting field of characteristic polynomials
of generators so that the Jordan forms and transformation matri-
ces can be dealt with. Hence, our ¢ in the analysis should be power
of ¢, which can be large enough to make our algorithm an expo-
nential one, depending on the given matrices. However, without
Jordan forms, it does not look possible to do systematic analysis.
In conclusion, the (polynomial time) algorithm we develop can be
applied only for very restricted cases.

2. It is known that the dimension of a commutative subalgebra of
M, (q) generated by two matrices is at most n, while there is no
known fact on the dimension of commutative subalgebra generated
by more than two matrices (see [1, 13, 15]). It might also be
possible to find a polynomial time algorithm to solve system (4),
when &1 and Sp are generated by one or two matrices.

3. We considered a key exchange protocol using matrix algebras and
its analysis in this article, yet there is no satisfactory analysis
in the sense that we made very strong assumption about Jordan
forms. The verification of the usefulness of the protocol is open.
We believe that to find effective algorithms and calculation of its
complexity to solve problems described in section 4 is itself an
interesting work.
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