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BRILL-NOETHER DIVISORS ON THE MODULI
SPACE OF CURVES AND APPLICATIONS

EDOARDO BALLICO AND CLAUDIO FONTANARI

ABSTRACT. Here we generalize previous work by Eisenbud-Harris
and Farkas in order to prove that certain Brill-Noether divisors on
the moduli space of curves have distinct supports. From this fact
we deduce non-trivial regularity results for a higher codimensional
Brill-Noether locus and for the general gzil-gonal curve of odd genus
g.

1. Introduction

Let M, denote as usual the moduli space of smooth algebraic curves
of genus g. By classical Brill-Noether theory (see [1] and references
therein), if C is a general element of M, and the Brill-Noether number
p(g,r,d) = g — (r + 1)(g — d + r) is negative, then there are no linear
series g}, of dimension r and degree d on C, hence the locus M} C
My, which corresponds to curves carrying a g is a proper subvariety
of M. In particular, for p(g,r,d) = —1 we obtain the so-called Brill-
Noether divisor D7}, which seems to play a special role in the birational
geometry of M. The class of the closure of D} in the Deligne-Mumford
compactification ﬂg of My was computed by Eisenbud, Harris, and
Mumford in [12], [9], and as a consequence they were able to determine
the Kodaira dimension of My for g > 24. In the case g = 23, the
canonical divisor Ky; turns out to be linearly equivalent to the effec‘mve
sum of a Brlll-Noether divisor and some boundary divisors; hence in
order to prove that x(Mays) > 1 it is sufficient to show that Di, and
D2, have distinct supports on Maz. This fact is indeed established in
[9], Proposition 3, and it has been recently refined by Farkas, who in
[11] proves that x{Ma3) > 2. The present work is strongly inspired
by Eisenbud-Harris and Farkas computations, which in-turn rely on the
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theory of limit linear series developed in [7]. Our main result is the
following:

THEOREM 1. Let g, 7, s, d, e be positive integers such that p(g,r,d) =
p(g,s,e) = —1. Assume that
(i) eitherr=1,s8> 2, and g > 25+ 1;
(ii) orr =2, s > 3, and g is odd with g > 3—5—%%”-
Then M}, # M3.

Besides being rather interesting in its own, Theorem 1 allows us to
draw a couple of non-trivial geometric consequences: namely, Corollary 1
exhibits a locus of curves carrying more than one special linear series
which has the expected codimension in Mg, while Corollary 2 estimates
the minimal degree of a projective model of the general %l-gonal curve
of odd genus g.

As suggested by the referee, by applying suitable ramification se-
quences one could address the following nice question:

QUESTION 1. Fix positive integers r, s, d, e, with s > r. Is there an
integer f(r,s,d,e) such that neither M, C M3 nor M C M7, for all
genera g > f(r,s,d,e)?

We wish to thank the referee for several insightful remarks. This

research was partially supported by MIUR and GNSAGA of INJAM
(Italy). '

2. The results

For the benefit of the reader, first we recall some standard notation
in the theory of limit linear series. Let C be a smooth curve of genus g,
L a g; on C and p € C a point. The vanishing sequence of L at p
0<af(p)<...<af(p)<d

is defined by ordering the finite set {ord,(o)}, where o is a section of L.
The ramification sequence of L at p

0<af(p)<...<af(p)<d-r
is defined as of (p) = al(p) — i. The Brill-Noether number of L at the

points pi, ..., p, of C is by definition

p(gaLapla cee ,pn) = p(g,'r‘, d) - Zzaf(pl)

i=1 j=0



Brill-Noether divisors 1281

If C is a curve of compact type, a limit g on C is a collection of ordinary
linear series:

L={Lr e GyF):FCC is acomponent}

satisfying the following compatibility condition: if F, G are components
of C and FNG = {p}, then

a;" (p) + a;5,(p) > d

for i = 0,...,r. The limit g} is called refined if equality holds every-
where, while the ordinary linear series L is called the F-aspect of L.

Proof of Theorem 1. In case (i), fix t :==d = 9—J2r—1, while in case (ii)
let g+1=6m and fix t := 2m+ 1. Let C = F; U EU F,, where (F1,p1)
and (Fy,p2) are general pointed curves of genus g(Fy) = g(F») = 3;—1,
Fy N Fy = 0, and E is a smooth elliptic curve with F; N E = {p1},
FyNE = {p2}, and p;, p2 differ by t-torsion in Pic(E). We are going to
construct L, a limit g}, on C, aspect by aspect.

In case (i), we take Lp, := |dp;| for i = 1,2, and as Lg the pencil
spanned by dp; ~ dpz on E. Notice that a™Fi(p;) = (0,d), a2 (p;) =
(0, d), hence the compatibility conditions are satisfied, while the smootha-
bility is automatic from [7], Proposition 3.1.

In case (ii), we take Lp, € G2(F;) such that ol (p;) = (m,2m +
1,3m+1). Since Zfzg(ai+=‘)g—1—d+2)+ = 97_1, where z 4 := max{z, 0},
the existence of Lp, follows from [9], Proposition 1.2. Next, we take
Lg C |Og(D)| with D = mp; + (3m + 1)pe and vanishing sequence
(m,2m,3m + 1) at p;. This time, the existence of L is ensured by
[8], Proposition 5.2. These choices make L to be a refined limit g7} on
C with p(Lg,p;) = 0, p(Lg,p1,p2) = —1. Finally, we have to prove
that L is smoothable; by [7], Theorem 3.4, it is sufficient to check that
L is dimensionally proper. Let m; : T; — A;, p; : A; — Ty be the
versal deformation of [(Cy, p;)] € ng_;_l_ . Since being general is an open

condition and p(Lp,,p;) = 0, we have

dim G (T'i/ Ay, (pi, (m, 2m, 3m — 1))) = dim A; + p(LF,, pi)

()

Similarly, let 7 : I' — A, p : A — T be the versal deformation of
[(E,p1,p2)]. From [8], Proposition 5.2, and p(Lg, p1,p2) = —1 it follows
that (for further details, see [11], proof of Theorem 2, Step 2)

dim%2(T/A, (ps, (m, 2m — 1,3m — 1))) =dim A + p(Lg,p1,p2) = 2.
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Hence in both cases (i) and (ii) L exists and it is smoothable.

On the other hand, we claim that C has no gJ. Indeed, suppose
that M were a gi. Up to exchange the g with its residual linear series
K — g, we may assume e < g — 1. Since (Fj,p;) are general, we have
p(Mp,,p;) > 0. Since p(g, s,e) = —1, by additivity ([7], Proposition 4.6)
we obtain p(Mg,p1,p2) < 0. For dimensional reasons, there must be
sections o; such that div(a;) > a2® (p1)p1 +alZ (p2)p2, hence aME (pr) +
aﬁ“i (p2) <e. By adding up all these inequalities, we get p(Mg,p1,p2)
> —s. Furthermore, p(MEg,p1,p2) < —1 precisely when for at least
two values i < j we have equalities azM E(p1) + ay_ E(p2) = ayE (p1) +
a?{’?(m) = e, which means that there are sections o;, o; such that
div(os) = a}E(p1)p1 + a % (p2)pe, div(o;) = a}™®(p1)p1 + )= (p2)ps-
By setting a; ; := aj.\/[E (p1) — aZME (p1) and by subtracting div(o;) from
div(c;) we obtain a;j(p1 — p2) = 0. Since p; — p2 has exact order ¢ in
PicO(E) and 0 < a;; < e < g—1, it follows that either a;; = t or a;; = 2t.
Thus we may write
(1) div(o;) = Dij + a;jp2,

(2) diV(O’j) = Dij + a1

for some effective divisor D;; of degree e — a;; supported on p; and po.
If p(ME,p1,p2) < —2, then we have at least another equality aljy E(py)+
aﬂ{i(pg) =e. If j < k, define exactly as above the integers a;;, a;t, ajk
and write

3) div(o;) = Dy + aixp2,
(4) div(o;) = Djx + ajkp2,
(5) div(ox) = Di + aixp1,
(6) diV(Uj) = Djk + a;kP1-

Notice that, since a;j,aik, ajx € {t,2t}, at least two out of them must
be equal. If a;; = a;; then from (1) and (3) it follows that D;; = Dy,
hence by (5) and (2) we get the contradiction div(ox) = div(o;). Next,
if a;; = aji then from (2) and (4) it follows that Djx — Dij = ai;(p1 —
p2) = 0, hence D;; = Dj;, and by (6) and (2) we get the contradiction
div(og) = div(o;). Finally, if a;, = aj; then from (5) and (6) it follows
that Dy = Dj, hence by (3) and (4) we get the contradiction div(o;) =
div(o;). If k > j a completely analogous argument applies. Hence we
may assume p(Mg,p1,p2) = —1 and p(Mg,p;) = 0. It follows that

Mg, _ _ M B
s F o) + GG —e+s)y < G and Yi(ey H(p) + 55 —ets) =
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_ ) Mr, _ .

%—1, from which we deduce o Fi (pi) > —9—2—1 + e — s for every 1, j.
By the compatibility conditions, a;.wE (pi) < 3;—1 + j for each 4,7, so
aME(p;) < %1 + s. On the other hand, in both cases (i) and (ii) our

numerical assumptions imply 9%1 +s<t+ BT‘t: indeed, just notice that
g—e+s= g% since p(g, s,e) = —1, recall the expressions of ¢ in terms
of g and isolate g with elementary algebraic manipulations. It follows
that aME(p,) < aij + “=¥ . in contradiction with (1) and (2), so M
cannot exist. O

Our first application of Theorem 1 concerns higher codimensional
Brill-Noether loci, whose geometry is in general rather messy (see for
instance [10], section 2; for analogous partial results, see also [6] and
[13]).

COROLLARY 1. Under the assumptions of Theorem 1, M, M¢ has
a component of codimension 2 in M,.

Proof. Let D7 (resp. Dj) the divisorial component of M7 (resp. M3),
which by [10], Theorem (1.1) (ii) is unique. The proof of Theorem 1
shows that D} # DZ. Indeed, the curve C = F} U E U F, carries a
finite number of g};’s (recall that the curves F;’s are general and use [8],
Proposition 5.2), hence its smoothing lies in a component of codimension
p(g,7,d) = —1. Since M, has only finite quotient singularities, from
Dy # D¢ it follows that either D), N D has pure codimension 2 or
DiNDZ = . In order to exclude the last possibility, consider the closure
E7 (resp. EZ) of D, (resp. D?) in the Deligne-Mumford compactification
My of M. The class of such divisors was computed in [9], Theorem 1
(see also the first few lines of p. 219 in [2] for a related remark). Hence, by
applying Cornalba-Harris criterion for ampleness (see [3] Theorem (1.3)),
we deduce that supp(E7) UOM, and supp(E?) U(‘?—J\Zg support an ample
divisor on M,. Therefore if D N DS = § then M, would be the union
of two affine open subsets, which is definitely not the case for g > 4 (as
it follows from the well-known cohomological properties of M,). O

Next we turn to the geometry of the general k-gonal curve of genus
g, in the special case in which p(g,1,k) = —1. As in [5], Definition 2.1,
let s(r) = s(r,C) be the minimal degree of a complete, base point free
and simple linear series of dimension » > 2 on a curve C (s(r) is the
minimal degree of a birational model of C in P").

COROLLARY 2. Ifr > 2 and C is the general %i—gonal curve of odd
genus g > 2r + 1, then s(r) is the minimal positive integer such that

p(g,m,8(r)) > 0.
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Proof. Consider the curve C as a general element of M@ We claim

that C carries no g} with p(g,7,d) < 0. Indeed, if p < i1 the claim
follows from [10], Theorem (1.1) (i), while for p = —1 it is a direct
consequence of Theorem 1 (i). On the other hand, if p(g,7,d) > 0 then
[4], Theorem 1, ensures that C carries a base point free and simple g,
hence the proof is over. O
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