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CONSERVATIVE MINIMAL QUANTUM
DYNAMICAL SEMIGROUPS GENERATED BY
NONCOMMUTATIVE ELLIPTIC OPERATORS

CHuaNGS00 Baun aAND CuuL K1 Ko

ABSTRACT. By employing Chebotarev and Fagnola’s sufficient con-
ditions for conservativity of minimal quantum dynamical semigroups
[7, 8], we construct the conservative minimal quantum dynamical
semigroups generated by noncommutative elliptic operators in the
sense of [2]. We apply our results to concrete examples.

1. Introduction

Let M be a von Neumann algebra acting on a separable Hilbert
space b, and let (o )er be a weak*- continuous group of *-automorphisms
of M. In [2], using a quantum version of Feynman-Kac formula, the au-
thors constructed the Markov semigroup generated by noncommutative
elliptic operator £ on M:

(11) D) = D),
LX) = %52@() + ad(X) +6(X)a — %[a, la, X]l, X € D(L),

where a is a self-adjoint element of M, § is the generator of (a)icr and
[A,B] = AB — BA. See also [15, 17]. This generator £ can be regarded
as the quantum version of classical elliptic operator %A+ﬂ oy, where 7
and A are the gradient and Laplacian operators on L(R") respectively,
and 3 is a R™-valued function on R"™.

Let M be the Banach space B() of bounded linear operators on §.
Let (Ui)ier be a strongly continuous one parameter group of unitary
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operators, Uy = e'itb, where b is a self-adjoint generator of U;. Let the
automorphisms (o ):cr be unitarily implemented by (Ui)ier, ar(X) =
U XUr, X € M. Then

(1.2) 0(X) =i[b, X], X € D(9).
See Proposition 3.2.55 of [4]. Put

1
(1.3) L:=q—1b, H:= §(ab + ba).

A simple algebraic computation shows that £ has the following Lindblad
type representation:

(14)  L£(X)=i[H,X] - %L*LX + XL — %XL*L, X € D(L).

The purpose of this paper is to extend the construction of the Markov
semigroup with generator £ to an unbounded self-adjoint operator a. Let
us mention that for an unbounded self-adjoint operator a, the method
of the quantum Feynman-Kac formula in [2, 17] can not be applied. So
we employ the theory of the minimal quantum dynamical semigroup to
construct the Markov semigroup.

A quantum dynamical semigroup(q.d.s.) 7 = (73)s>p in B(h) is a
weak* (or ultraweakly) continuous semigroup of completely positive lin-
ear maps on B(h). A q.d.s. T is conservative (or Markov) if T,(I) = I
where [ is the identity operator on h. In rather general cases, the infin-
itesimal generator £ can be written (formally) as

1

(15) LX) =ilH,X]~ XM+ Y LIXL - %MX, X € B(y),

=1
where M =372, L7L;, Ly is densely defined and H a symmetric oper-
ator on b [16, 18]. Notice that the generator in (1.4) is the above form
with [ = 1. For the unbounded generator £ in (1.5) with (unbounded)
coeflicients H and L;, the solution 7 of the quantum master Markov
equation

(1.6) LX) = LEX), To(X) =X

may not be unique and conservative ([3, 5]). Under suitable conditions,
the above equation (1.6) has a minimal solution known as the minimal
g.d.s.. See Section 2 for the details. Moreover if the minimal q.d.s. is
conservative, it is the unique solution of the above equation. Chebotarev
gave necessary and sufficient conditions for conservativity ([5]). Some of
these conditions are difficult to verify practically. Later simplified forms
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of sufficient conditions were developed in [6, 7, 8, 9]. For the recent
relevant works with the minimal q.d.s., see [1, 13, 14].

In this paper, applying the results of F. Fagnola and A. M. Cheb-
otarev [7, 8], we will obtain the sufficient conditions of operators a, b
such that the equation (1.6) has a minimal solution (7;);>¢ and the
minimal q.d.s. (7¢)¢>0 is conservative. Indeed, under the boundedness
of [a,b] together with appropriate domain conditions, we can construct
the minimal q.d.s. (7;):>0 generated by £ in (1.4). See Proposition 3.4
and the following argument. In addition, if [[a,b], a] is relatively small
with respect to either a or else b, then the minimal q.d.s. is conserva-
tive. See Theorem 3.5 and Remark 3.7. We also consider the case |a, b]
is unbounded(Theorem 3.9). We apply our results to concrete examples
(Example 5.1, 5.2 and 5.3).

The paper is organized as follows: In section 2, we review the theory
of the minimal q.d.s. and introduce the sufficient conditions of Fagnola,
and Chebotarev[7, 8]. In section 3, we state main results. We give the
sufficient conditions of a, b such that the equation (1.6) has a minimal
solution and the minimal q.d.s. is conservative. Section 4 is devoted to
the proofs of Proposition 3.4, Theorem 3.5, Theorem 3.6 and Theorem

3.9. As an application to our results, we give concrete examples in
Section 5.

2. Review on the minimal quantum dynamical semigroups

Let h be a complex separable Hilbert space with the scalar product
(-,-) and norm ||-||. Let B(f) denote the Banach space of bounded linear
operators on h. The uniform norm in B(h) is denoted by || - |l and the
identity in b is denoted by I. We denote by D(G) the domain of operator
G inh,

DEFINITION 2.1. A quantum dynamical semigroup(q.d.s.) on B(h) is
a family 7 = (7;);>¢ of operators in B(f) with the following properties:
(i) To(X) = X, for all X € B(bh);
(i) Tis(X) = 72(7( ), for all s,¢ > 0 and all X € B(h);
(ili) Zz(I) < I, for all ¢t > 0;
(iv) (completely positivity) for all ¢ > 0, all integers n and all finite
sequences (X;)7_;, (Y;)iL, of elements of B(h), we have

ZYZ )Y > 0;

51=1
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(v) (normality) for every sequence (Xy)n>1 of elements of B(h) con-
verging weakly to an element X of B(h) the sequence (T3(Xy))n>1
converges weakly to T;(X) for all ¢t > 0;

(vi) (ultraweak continuity) for all trace class operator p on h and all
X € B(h) we have

Jim Tr{pT(X)) = Tr(pX).

We recall that as a consequence of properties (iii), (iv), for each ¢ > 0
and X € B(h), T; is a contraction, i.e.,

(2.1) [7e(X) oo < 1 X oo-

Also recall that as a consequence of properties (iv), (vi), for all X € B(b),
the map ¢ — 7T;(X) is strongly continuous.

DEFINITION 2.2. A q.d.s. 7 = (T¢)>0 is called to be conservative if
Ty(I)=1for all t > 0.

As mentioned in Introduction, the natural generator of q.d.s. would
be the Lindblad type generator ([16, 18]). Letting

1 x0
(2.2) G=—iH--M, M= Y LiL,
=1

the infinitesimal generator in (1.5) can be formally written by

o 0]
L(X)=XG+G' X+ LiXL.
=1
A very large class of q.d.s. was constructed by Davies[10] satisfying the

following assumption. It is basically corresponding to the condition
L(I)=0.

ASSUMPTION 2.3. The operator G is the infinitesimal generator of
a strongly continuous contraction semigroup P = (P(t))i>o in . The
domain of the operators (L;){2, contains the domain D(G) of G. For all
v,u € D(G), we have
[eo]
(2.3) (v,Gu) + (Gv,u) + > (L, Liu) = 0.
=1
As a result of Proposition 2.5 of [7] we can assume only that the

domain of the operators L; contains a subspace D which is a core for G
and (2.3) holds for all v,u € D.
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For all X € B(h), consider the sesquilinear form £(X) on h with
domain D(G) x D(G) given by

(2.4) (v, L(X)u) = (v, XGu) + (Gv, Xu) + Z (Liv, X Liu).
=1

Under the Assumption 2.3, one can construct a q.d.s. 7 = (7¢)¢>0 satis-
fying the equation

(2.5) (v, (X)u) = (v, Xu) +/0 (v, L(T5(X))uyds

for all v,u € D(G) and all X € B(}). Indeed, for a strongly continuous
family (7;(X)):>0 of elements of B(h) satisfying (2.1), the followings are
equivalent:

(i) equation (2.5) holds for all v,u € D(G),
(ii) for all v,u € D(G), we have

(2.6) (v, Ti(X)u) = (P(t)v, X P(t)u)
+ Z /t(LlP(t — $)v, T(X) L P(t — s)u)ds.
1=1"0

We refer to the proof of Proposition 2.3 in [8]. A solution of the equation
(2.6) is obtained by the iterations

@7 (@ TO(X)u) = (P(t)u, X P(t)u),
(u, TP (X)) = (P(t)u, X P(t)u)

T i / t(LlP(t — 8)u, T, (X)L, P(t — s)u)ds,
1=1 70

for all u € D(G). In fact, for all positive elements X € B(f) and all ¢ > 0,

the sequence of operators (’Z;(n) (X))n>0 is non-decreasing. Therefore it
is strongly convergent and its limits for X € B(h) and ¢t > 0 define the
minimal solution (T;);>o of (2.6) in the sense that, given another solution
(T{)t>0 of (2.5), one can easily check that

T(X) < T/(X) < |1 X |l

for any positive element X and all ¢ > 0. For details, we refer to [5, 12].
From now on, the minimal solution (7;)¢>¢ is called the minimal q.d.s..
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Recently Chebotarev and Fagnola have obtained easier criteria to
verify the conservativity of minimal q.d.s. (7¢);>0 obtained under As-
sumption 2.3. Here we give their results(Theorem 4.4 in (8], Corollary
4.4 in [7]).

THEOREM 2.4. Suppose that there exists a positive self-adjoint op-
erator C' in § with the following properties

(a) the domain D(G) of G is contained in the domain of the positive
square root C*/2 and D(G) is a core for C*/?,

(b) the linear manifolds L;(D(G?)), ! > 1, are contained in the domain
of C1/2, '

(c) there exists a positive self-adjoint operator ®, with D(G) C D(®'/?)
such that, for all w € D(G), we have

—2Re(u, Gu) = Z | Lyw|? = ||®Y2ul?,

(d) D(C) ¢ D(®) and for all u € D(C), we have ||®Yu| < ||CV/?ul],
(e) there exists a positive constant k such that

(28)  2Re(CY?u,CY2Gu) + 3 |ICV2Lul? < k| CYPul?,
=1
for all uw € D(G?).
Then the minimal q.d.s. (T¢)¢>¢ is conservative.

The following is another criteria for conservativity (see Corollary 4.4
and Lemma 5.1 (ii) in [7]).
THEOREM 2.5. Suppose that there exist a positive self-adjoint oper-

ator C and a core D for G in b with following properties
(a) the domain D(C) contains D and for all v,u € D,

<’U, u) + Z(lea Llu> = <'U, Cu>a
=1
(b) D is a core for G?,
(c¢) C(D) coincides with D and for alll > 1, L;(D) C D(C),
(d) there exists a constant k such that, for all u € D,

(2.9) 2Re(Cu, Gu) + Y _ |C*2Lyu® < k[|Cul®.
=1
Then the minimal q.d.s. (7;)s>¢ is conservative.
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3. Conservative minimal quantum dynamical semigroups:
Main results

Let a and b be self-adjoint operators on the Hilbert space § with
common core D satisfying a(D) C D, b(D) C D. Let H and L be the
operators defined by

(3.1) Hu = {a(bu) + baw)},
Ly = au — ibu,

for any u € D. H is a densely defined, symmetric operator. We denote
again by H its closure. The adjoint operator L* of L on D is given by

L*u = au + ibu, u e D.

Since D(L*) is dense, L is closable. Denote again by L its closure.
We consider the elliptic operator £ on B(h) formally given by
1 1

(3.2) L(X)=1H, X]- §L*LX +L*XL - —?:XL*L, X € D(L).
As mentioned in Introduction, we will construct the minimal q.d.s. with
the formal generator (3.2) under appropriate conditions and study con-
servativity of the semigroup.

In the rest of this paper, we assume that the operators a and b satisfy
the following properties:

AsSUMPTION 3.1. Suppose that a and b are self adjoint operators
with common core D on b satisfying
(i) D is an invariant subspace for a, b, i.e., a(D) C D, b(D) C D,
(ii) a2+ b? is essentially self adjoint with core D.
Let the operator G on D defined by

(3.3) Gu = —%(a2 + b?)u — ibau, Yu € D.

We rewrite G as the following form
(3.4) Gu = —%L*Lu — iHu, Yu € D.

Then the adjoint G* is given by G*u = —%(a2+b2)u+iabu for all u € D.
Since D is dense and D C D(G*), G is closable. Let us introduce another
assumption to endow a strongly continuous contraction semigroup with
generator G on §.

AsSUMPTION 3.2. The closure G of G is the infinitesimal generator
of a strongly continuous contraction semigroup on .
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Recall that H is symmetric on D. Clearly G is dissipative on D,
and so is G. If G (= G*) is dissipative then Assumption 3.2 holds. See
Corollary 4.4 in p.15 of [19].

From now on we denote again by G instead of G. Notice that D is
a core for G. Consider the sesquilinear form £(X) on § with domain
D x D given by

(3.5) (v, L(X)u) = (v, XGu) + (Gv, Xu) + (Lv, X Lu)
for all X € B(h). Clearly we have
(3.6) (v, Gu) + (Gv,u) + (Lv,Lu) =0

for all u,v € D. Two operators G and L satisfy the condition (2.3) on the
domain D, a core for G. As mentioned in Section 2, under Assumption
3.1 and Assumption 3.2, by the iterations, we have the minimal q.d.s.
T = (T¢)t>0 satisfying the equation

t
(3.7) (0, Ti(X)u) = (v, Xu) + /0 (v, L(T:(X))u)ds

for all u,v € D and for all X € B(h).

We state our main results. Under Assumption 3.1, we are looking
for sufficient conditions for existence and conservativity of the minimal
q.d.s. T = (T3)s>0 generated by (3.2). Put

K := —ila,b].
We first start with that K is bounded on D.

ASSUMPTION 3.3. There exists a constant k; > 0 such that
(3.8) | Kul| < ki lull, v €D.

We have the following results:

PRrROPOSITION 3.4. Under Assumption 3.1 and Assumption 3.3, the
closure of G defined as in (3.3)(or (3.4)) is the infinitesimal generator of
a strongly continuous contraction semigroup on .

Thus under Assumption 3.1 and Assumption 3.3, there exists the
minimal q.d.s. T = (7;)¢>0 satisfying the equation (3.7). In the following
theorems we give the conservative conditions of the minimal q.d.s. 7 =

(Tt)t>o0-

THEOREM 3.5. Let Assumption 3.1 and Assumption 3.3 hold. Sup-
pose that the domain of C'V/2 contains the domain D(G) of G and
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D(G?) C D(C"), where C" = a® 4 b%. Assume that there exist constants
ktz, k3, k4 such that

(3.9) 1K alull < kollaul| + ksllbull + kallull, v € D.

Then the minimal q.d.s. (Ty)¢>0 is conservative.

'THEOREM 3.6. Let Assumption 3.1 and Assumption 3.3 hold. Sup-
pose that D is a core for G and (1 + L*L)(D) = D. Assume that there
exist constants ks and kg such that

(3.10) 1K, L*Jull < ksl Lull + kellull, u € D.
Then the the minimal q.d.s. (T¢)t>¢ is conservative.

REMARK 3.7. Since (K, a]* is densely defined, [K, a] is closable. De-
note the closure by (K, a] again. If K a] is relatively small with respect
to either a or else b, then the inequality (3.9) holds obviously.

REMARK 3.8. One can check easily that the condition (3.10) in The-
orem 3.6 can be replaced by the following: there exist constants k7, kg
and kg such that

1K afull, 1L blul} < krllaul] + kslibul] + kollull, Vu € D.

Let us mention that in Theorem 3.5 we need the domain condition
D(G?) C D(a® + b?), which is essential to show the inequality (2.8)
for all u € D(G?), as contrasted with domain condition in Theorem 3.6,
D is a core for G? and (1 + L*L)D = D.

Next, we consider in case K is unbounded on D. In the following
theorem, we remove the bounded condition of K in Assumption 3.3.

THEOREM 3.9. Let Assumption 3.1 and Assumption 3.2 hold. Sup-
pose that the following properties hold:
(i) D(G) ¢ D(C"'/?) and D(G) is a core for C'1/2;
(ii) for all u € D(G?), there exists a convergent sequence (un)n>1 Of
elements of D such that both (Guy,)n>1 and (C'up)p>1 converge;
(iii) there exist constants ki, ko, k3 and k4 such that, for u € D,
(3.11) (u, aKbu)|, |{(u,aKau)| < ki{u, (C" + L)u),
[ Kull, 1K, alull < kellaull + ksllbul| + kalul],

where C" = a® + b%. Then the minimal q.d.s. (7;)¢>0 is conservative.
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4. Proofs of main results

In this section, we produce the proofs of Proposition 3.4, Theo-
rem 3.5, Theorem 3.6 and Theorem 3.9. We first give the the proof of
Proposition 3.4.

Proof of Proposition 3.4. Clearly K is symmetric on D. By (3.8)
and Theorem X.12 in [20], L*L = a2 + b® + K is an essentially self
adjoint operator with core D. So we denote again by L* L the self-adjoint

operator. It follows from (i) of Assumption 3.1 that D is invariant for
H,L, L

We will show that H is relatively small with respect to —%L*L with
relative bound 1, i.e., G = —iH — %L*L is a dissipative perturbation of

infinitesimal generator —%L*L of a contraction semigroup. Let u € D.
Using the definition of K, we have the relations that

ba?b = (ba)? + ibaK = b?a? + ibKa + ibaK,
ab’a = a?b® — iaKb — iabK

as bilinear forms on D, which implies

(4.1) llabu||? + ||baw||? = (u, (b%a® + a?b?)u)
+ i{u, (bKa — aKb)u) + (u, K*u).

Applying Schwarz inequality, and by (3.8), we obtain
! 212 | 12 2 1 434
E(u, (a*b* + b*a)u) < i(u, (a® + b*)u),
i(u, (bKa — aKb)u) < ki (u, (a 4 b*)u).
Substituting the above inequalities into (4.1) and using (3.8), we have
1
l|abul|? + ||bau|®* < E(u, (a* + b* + a%b? + b2a?)u)

+ k1 {u, (a2 + bz)u) + k%(u, u)

1 1
= 3y, (a® +b° + k1)’u) + 5’“%(% u)



Quantum dynamical semigroups 1241

and so
1
0] < = TabulP+ Toau]?
1
< s/ 1@ + b2 B2 + 32
1 1
(4.2) < HE(Qz 04k + il
1, 3
< HéL Lu|| + §k1\|u||

We have used (3.8) in the last inequality. Since D is a core for L*L,
the above inequality implies D(L*L) C D(H). Also we can extend the
above inequality to all w € D(L*L). Since H is symmetric on D, —iH
is dissipative. By Theorem 3.4 in p.83 of {19], the closure of G is the

infinitesimal generator of a strongly continuous semigroup of contrac-
tions. O

To show the conservativity of the minimal q.d.s., we only check the
conditions of Theorem 2.4 or Theorem 2.5.

Proof of Theorem 3.5. To produce the theorem we apply Theorem
2.4 for C = 2C" 4+ 1. First we show that the inequality (2.8) holds for
u € D. It follows from (3.1) and (3.3) that we have the relation

2Re(Cu, Gu) + (Lu, CLu)

= 2(u, (ab’a + ba®b — a®b® — b2a?)u)
+ 2i{u, (aba® — a*ba + ba® — a®b)u)

= 2(u, (abab — ab[a, b] + baba + ba[a, b] — aabb — bbaa)u)
+ 2i(u, (aba® — ala, bla — [a,bla® — a*ba — a*[a, b))u),

and by K = —ia, b], we can rewrite

2Re(Cu, Gu) + (Lu, C Lu)
= 2(u, (K* - i(aKb — bKa))u) + 2(u, (a*K + Ka® + 2aKa)u)
= 2(u, K?u) — 2i(u, (aKb— bKa)u)
+ 2(u, (ala, K| — [a, K]a + 4aKa)u)
(4.3) = 2(|Ku|?® + 2Im(u, aKbu) + 2Re(u, ala, K|u) + 4(x, aKauy).
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We get from (3.9) and Schwarz inequality that

Re(u, ala, Ku) < [|au]| [|la, K]ul|
< kellau|® + kallaullllbul + kallaull ||

< ko(u, a®u) + k—;(u, (a? + b2)u) + %(u, (a? 4 1)u)
(4.4) < ks{u, C'u) + ke(u, u),

where ks, kg are positive constants. By Schwarz inequality and (3.8), we
have

(4.5) Im(u, aKbu) < %(u, C'u),

(u,aKau) < ky(u,C'u).
Substituting (4.4) and (4.5) into (4.3), we obtain

(4.6) 2Re(Cu, Gu) + (Lu, CLu) < 2k7{u, C'u) + kr{u,u)
= k7 (u, Cu),

where k7 is a positive constant.

In order to extend the above inequality to D(G?), we consider u €
D(G?). By the assumption D(G?) C D(C')=D(C), we have u € D(C).
Recall that D is a core for C and the inequality (4.2)

Il < JIcul+ (ka+ 5 ) lal.

Thus there exists a sequence (u,, ) of elements of D such that lim,_,o upn, =
u, limy, oo Cup = Cu and limy,—,o Gu, = Gu. Inequality (4.6) implies
that (CY2Luy,) is a Cauchy sequence. Therefore it is convergent and
the conditions (b) and (e) in Theorem 2.4 hold.
~ Since D is a core for €’ and D(C") is a core for C'Y/? (see Lemma 2.4
of [7]), D is a core for C''/2 (see Lemma 2.5 in [11]). Thus D(G) is a
core for C'1/2, which means that the condition (a) of Theorem 2.4 holds.
By (3.8) and Theorem X.12 of [20], we have LL* = o> +b* — K =
C' — K and 2C’ = L*L + LL*. The conditions (c), (d) of Theorem 2.4
are followed directly. This completes the proof. O

Proof of Theorem 3.6. We choose the operator C = L*L + 1 in order
to apply Theorem 2.5. Recall that D is a core for L*L and G. The
conditions (a)—(c) in Theorem 2.5 are followed from our assumptions.
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It remains only to show the inequality (2.8). Let u € D. Notice
[L*, L] = 2K on D and

[(L*)% - L2 L*L) = (L*)?[L*, L) + L*[L*, L]L* + L[L*, L]L + [L*, L] L?

2((L*)?K + L*KL* + LKL + KL?)

=2(L*[L*, K] +2L*KL* +2LKL + [K,L]L).
So we can write
(4.7) iu, [H, L*Lu) = %@, [(L*)? — L%, L*L)u)
= 2Re(u, LK Lu) + Re(u, [K, L|Lu).

By Schwarz inequality, (3.8) and (3.10), we easily obtain
(4.8) i(u, [H, L*Llu) < k7{u, L*Lu) 4 kg{u, u),

where k7, kg are constants. It follows from (3.4) and C = L*L + 1 that
we have

2Re(Cu, Gu) + (Lu, CLu) = ¢(u, [H, L* L|u) + (u, L*[L*, L] Lu)
(4.9) = i(u, [H, L* Llu) + 2(u, L* K Lu).
Applying L(D) C D, (4.8) and (3.8) into (4.9) we obtain
2Re(Cu, Gu) + (Lu, CLu) < (k7 + 2k1){(u, L* Lu) + ks||u||
< k(u,Cuy),
where k = max{2k1 + kv, ks}. The proof is completed. O

Proof of Theorem 8.9. To prove the theorem we apply Theorem 2.4
for C = 2(a® +b%) + 1. Clearly the condition (a) of Theorem 2.4 follows
from our assumptions.

Let ® = L*L. By (3.6), we have for all u € D

U

u

(4.10) —2Re(u, Gu) = || Lul|? = |@"/%u?,
and so
(4.11) 121 2ul|* < 2f|ull||Gull.

Since D is a core for G, it is followed from (4.11) that D(G) C D(®'/?)
and the relation (4.10) holds on D(G). Thus the condition (c) of Theo-
rem 2.4 holds.

Notice that ® = ¢/ + K on D. We get from the condition of K in
(3.11) that K is relatively small with respect to C’. Thus D(C) C D(®).
By Schwarz inequality, we obtain

(u, Ku) = —i(u, (ab — ba)u) < (u, (a> +b*)u), u € D
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and so
(u, ®u) = (u,C'u) + (u, Ku) < (u,Cu), u € D.
Since D is a core for C, the above inequality holds on D(C), which
implies the condition (d) of Theorem 2.4.
Now it remains to check the conditions (b) and (e) of Theorem 2.4.
First we show that the inequality (2.8) hold for v € D. By (4.3), we
have

2Re(Cu, Gu) + (Lu, C'Lu)
= 2(||Kul® + 2Im(u, aKbu) + 2Re(u, afa, K|u) + 4(u, aK au)).

Using the similar calculations used in the proof of Theorem 3.5, we get
from (3.11) and Schwarz inequality that

2Re(Cu, Gu) + (Lu, CLu)
< k{u, (2(a® + b%) + 1)u) = k(u, Cu),

where k is a constant.

Now we consider u € D(G?). By the assumption (ii), there exists a
sequence (u,) on D such that lim, . u, = u, lim, o Cu, = Cu and
limy, 00 Gup, = Gu. Thus the conditions (b) and (e) of Theorem 2.4 can
be checked by the similar method used in the proof of Theorem 3.5. The
proof is completed. O

5. Some examples

In this section we apply our results to study conservativity of three
minimal q.d.s.. We give two examples in case [a, b] is bounded (Example
5.1 and Example 5.2), and the third example for other case (Example
5.3).

EXAMPLE 5.1. Let h = L?(R,dz) and D be the subspace C{°(R),
the space of C*°-functions with compact support. Let W € D.

The multiplication, differential operators a = W(z), b = i% are self
adjoint with common core D and D is an invariant subspace for a, b. By
Theorem X.28 in [20], a® + % = W(x)? — %z is a self adjoint operator
with core D. Indeed for any u € D, abu — bau = —iW'u and so || Ku| <
[W'||oollu||. Thus we can construct the minimal q.d.s. (7;);>0 satisfying
(3.7). Since V(m)ad; is infinitesimally small with respect to —%2;, for
any V(z) € C°(R), we have D(G) = D(a? + b?)(= D(b?)). Therefore
Theorem 3.5 implies that the minimal q.d.s. (7¢):>0 is conservative.
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REMARK 5.1. In the case a is a bounded self adjoint operator, we
would like to mention that one can also use the method of [2] to construct
the Markov semigroup generated by in noncommutative elliptic operator

L.

In the following example we apply Theorem 3.6.

EXAMPLE 5.2. Let h = [5(C) be the space of sequences (a,)5
of complex numbers satisfying 3 o0 o |an|? < co and {en}32, be the
standard orthonormal basis in §. Denote by N, A, A* the number, an-
njhilation and creation operators on § defined as follows. The number
operator N is the self-adjoint multiplication operator Ne,, = ne,, with
maximal domain {{a,)22, € h| > oo nan|? < oo}. The annihilation

and creation operators are given by D(A) = D(A*) = D(v/N) with

Ae,, — Vnen_1 ?f n=12,..
0 it n=20

and A*e, = v/n+ lept1. Let D be the subspace of the finite linear
combinations of e,,’s. Then A*A = AA* —1 = N and D is an invariant
core for A, A* and N.

Let

(5.1) a=A+ A" b=—i(A— A"

Then D is an invariant core for both a and b, and a? + b* = 2(2N + 1)
is a self-adjoint operator with core D.
We write that for u € D,

(5.2) Ku = —i[a, blu = 2u,
2Hu = (ab+ ba)u = —2i(A? — (A*)?)u,
L*Lu = (a®* + b + K)u
=4(N+lu=4(A"A+1)u
and so
Gu = —%L*Lu —iHu
(5.3) = —2(A*A+ Du — (A% — (4")*)u.

Since Assumption 3.1 and Assumption 3.3 hold, Proposition 3.4 implies
that the closure G of —H — %L*L is the generator of a strongly con-
tinuous contraction semigroup. And by (5.2) [K, L*] = 0, which implies
that the condition (3.10) is clearly satisfied.
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To check that D is a core for G?, consider —GZ2. Notice that for each
l-particle vector e,

1/2
(5.4)  lAfAf - Afal <@+ D)V @02 < (@4n))

where Afé is either A or A*. By (5.3), (—G?)" has 16™ terms and each
of them is a product of less than or equal to 4n operators A or A*. So
by tedious but elementary calculation (similar to that of Example 2 in
p.204 of [20]), we have

1/2
|l(-G2)”el||gk"’16n((l+4n)!) n=1,2,--,

where k is a constant. So e; is an analytic vector for —G? and D is a
dense subset of invariant, analytic vectors for —G?. We should show the
dissipativity of the operator —G2. Let v € D. It is followed from (5.3)
that we have

(5.5) 2Re(u,—Gu) = —%m, (L*L)%u) + 2(u, H?u)
= —8(u, (N 4+ 1)%u)
+ 2(u, (A%(A%)? + (A%)2A% — A% — (A")Y)u).

Using AA* — A*A =1 and Schwarz inequality, we get
(5.6) A%(AN)E 4 (A*)2A% = 2(N? + N +1),

—(A% 4 (A%)Y) < A2(A%)2 & (A7)2A2
on D. Substituting (5.6) into (5.5), we have

2Re(u, —G?u) < —8(u, Nu) < 0,

which implies that —G? is dissipative. Therefore we get from Theorem
3.1.18. and Corollary 3.1.20 in [4] that D is a core for —G2.

Since C = L*L + 1 = 4N + 5 it is clear that C(D) = D. Therefore
Theorem 3.6 implies the existence of the conservative minimal q.d.s.
(Ty)-

REMARK 5.2. Also we can consider the number N, annihilation A
and creation A* operators defined on L?(R, dx) using Hermite functions
(see Example 2 p.204 in [20]). Then the relations (5.1) may be written
by

o= At A =Bz, b= —i(A-A) = —VEL,

where z and —i% are the position and momentum operator on L?(R, dx)
respectively.
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In the following, we construct the conservative minimal q.d.s. using
Theorem 3.9.

EXAMPLE 5.3. Let h, A, A* and N as in in Example 5.2. Let
a=A+ A" b=AA=N.

Let D be the subspace of the finite linear combinations of e},s. Since D
is an invariant domain for a, b and consists of analytic vectors for both
operators, it is an invariant core for both a and b. See Theorem X.39
and Example 2 in p.204 in [20]. Similarly one can check that a? + b2 is a
self-adjoint operator with core D (actually a? is infinitesimal small with
respect to b%). Thus Assumption 3.1 are satisfied.

We have that on domain D,

(5.7) K = —i(ab—ba) = i(A* — A),
2H =ab+ ba

(5.8) = A+ A* +2((A")2A + A*A?),
L'L=ad"+bV+K

(5.9) = (A% + (A*)> + 2N + 1) + N2 +i(4" - A).

By the definition of G (see (3.4)), we have
Gu = —%L*Lu —iHu
1

— _5(,42 (A 42N £ 1+ N2 4i(A* — A))u

- %(A A+ 2((AY)2A + A*A2)>u
for u € D. Using the inequality (5.4), one can check that each [-particle
vector e; is an analytic vector for G. Thus the closure of G generates a
strongly continuous contraction semigroup by Theorem 3.1.18. p.179 in

[4]. Assumption 3.2 holds. Denote again by G the closure of G.
Applying the inequality

(5.10) AT Afull < kal(247A+ 1) 2|, ue D,

where A;# is either A or A* and k, is a constant, we can easily check
the condition (3.11) in Theorem 3.9 since aKb, aKa (K and [K,a]) are
polynomials of degree n < 4 (n < 2, respectively) of the creation and
annihilation operators A*, A. Thus the condition (iii) of Theorem 3.9 is
satisfied.
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For the domain condition, notice that for v € D,

1
i(a2 + )u

(G-l—iH-l—%K)u

1
< Gull + | Hull + 5 1Kl
< [IGull + ell(a® + 6%)ull + Ellull,

where € is any positive constant and and k is a constant depending on
€. Here we have used that H, K are infinitesimal small with respect to
b = N2. Put € = . Then we have

< ||Gull + llull, e D.

HZIE(“z + )

Since D is a core for G, we obtain from above inequality that D(a+ 5%)
contains D(G) and for any u € D(G), there exists a convergent sequence
(ur) of elements of D such that both Gu,, and (a?+b?)u,, converge, which
implies the condition (ii) of Theorem 3.9.

Since D C D(G) and D(G) C D(a? + b?), D(G) is a core for C' =
a? + b%. Notice that D(C') is a core for C''/2. Thus D(G) is a core for
C'"*/2. The condition (i) of Theorem 3.9 holds. Therefore a and b satisfy
all conditions of Theorem 3.9.
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