References
- M. A. Arcones, On the law of the iterated logarithm for Gaussian processes, J. Theoret. Probab. 8 (1995), no. 4, 877-903 https://doi.org/10.1007/BF02410116
- S. M. Berman, Limit theorems for the maximum term in stationary sequence, Ann. Math. Statist. 35 (1964), 502-616 https://doi.org/10.1214/aoms/1177703551
- P. Billingsley, Probability and Measure, J. Wiley & Sons, New York, 1986
- S. A. Book and T. R. Shore, On large intervals in the Csorgo-Revesz theorem on increments of a Wiener process, Z. Wahrsch. verw. Gebiete 46 (1978), 1-11 https://doi.org/10.1007/BF00535684
- Y. K. Choi, Erdos-R enyi-type laws applied Gaussian processes, J. Math. Kyoto Univ. 31 (1991), no. 3, 191-217 https://doi.org/10.1215/kjm/1250519901
- Y. K. Choi and N. Kono, How big are the increments of a two-parameter Gaussian process?, J. Theoret. Probab. 12 (1999), no. 1, 105-129 https://doi.org/10.1023/A:1021796610843
- E. Csaki, M. Csorgo, Z. Y. Lin, and P. Revesz, On infinite series of independent Ornstein-Uhlenbeck processes, Stochastic Process Appl. 39 (1991), 25-44 https://doi.org/10.1016/0304-4149(91)90029-C
-
E. Csaki, M. Csorgo, and Q. M. Shao, Fernique type inequalities and moduli of continuity for
${\iota}^2-valued$ Ornstein-Uhlenbeck processes, Ann. Inst. H. Poincare 28 (1992), no. 4, 479-517 -
M. Csorgo, Z. Y. Lin, and Q. M. Shao, Path properties for
$1^{\infty}$ -valued Gaussian processes, Proc. Amer. Math. Soc. 121 (1994), 225-236 https://doi.org/10.2307/2160387 - M. Csorgo and P. Revesz, Strong Approximations in Probability and Statistic, Academic Press, New York, 1981
-
M. Csorgo and Q. M. Shao, Strong limit theorems for large and small increments of
${\iota}^p-valued$ Gaussian processes, Ann. Probab. 21 (1993), no. 4, 1958-1990 https://doi.org/10.1214/aop/1176989007 - X. Fernique, Continuite des processus Gaussiens, C. R. Math. Acad. Sci. Paris 258 (1964), 6058-6060
- F. X. He and B. Chen, Some results on increments of the Wiener process, Chinese J. Appl. Probab. Statist. 5 (1989), 317-326
- N. Kono, The exact modulus of continuity for Gaussian processes taking values of a finite dimensional normed space in: Trends in Probability and Related Analysis, SAP'96, World Scientific, Singapore, 1996, pp. 219-232
- Z. Y. Lin, How big the increments of a multifractional Brownian motion?, Sci. China Ser. A 45 (2002), no. 10, 1291-1300
- Z. Y. Lin, K. S. Hwang, S. Lee, and Y. K. Choi, Path properties of a d- dimensional Gaussian process, Statist. Probab. Lett. 68 (2004), 383-393 https://doi.org/10.1016/j.spl.2004.04.012
- Z. Y. Lin and C. R. Lu, Strong Limit Theorems, Science Press, Kluwer Academic Publishers, Hong Kong, 1992
-
Z. Y. Lin and Y. C. Qin, On the increments of
$1^{\infty}$ -valued Gaussian processes, Asym. Methods in Probab. and Statist.(Ottawa), Elsevier, 1998, 293-302 - C. R. Lu, Some results on increments of Gaussian processes, Chinese J. Appl. Probab. Statist. 2 (1986), 59-65
- D. Monrad and H. Rootzen, Small values of Gaussian processes and functional laws of the iterated logarithm, Probab. Theory Related Fields 101 (1995), 173- 192 https://doi.org/10.1007/BF01375823
- J. Ortega, On the size of the increments of non-stationary Gaussian processes, Stochastic Process Appl. 18 (1984), 47-56
- P. Revesz, A generalization of Strassen's funtional law of iterated logarithm, Z. Wahrsch. verw. Gebiete 50 (1979b), 257-264 https://doi.org/10.1007/BF00534149
- Q. M. Shao, p-variation of Gaussian processes with stationary increments, Stu dia Sci. Math. Hungar. 31 (1996), 237-247
- L. X. Zhang, A Note on liminfs for increments of a fractional Bwownian motion, Acta Math. Hungar. 76 (1997), no. 1-2, 145-154 https://doi.org/10.1007/BF02907058
- L. X. Zhang, Some liminf results on increments of fractional Brownian motion, Acta Math. Hungar. 17 (1996), 209-234
Cited by
- Path properties of l p -valued Gaussian random fields vol.50, pp.10, 2007, https://doi.org/10.1007/s11425-007-0084-6