J. Korean Math. Soc. 42 (2005), No. 6, pp. 1187-1203

ASYMPTOTIC NUMBER OF GENERAL CUBIC
GRAPHS WITH GIVEN CONNECTIVITY

GAB-BYung CHAE

ABSTRACT. Let g(2n,l,d) be the number of general cubic graphs
on 2n labeled vertices with [ loops and d double edges. We use
inclusion and exclusion with two types of properties to determine
the asymptotic behavior of g(2n,l,d) and hence that of g(2n), the
total number of general cubic graphs of order 2n. We show that
almost all general cubic graphs are connected. Moreover, we deter-
mined the asymptotic numbers of general cubic graphs with given
connectivity.

1. Introduction

Let g(2n,l,d) be the number of general cubic graphs on 2n labeled
vertices with | loops and d double edges. In a recent related paper,
Palmer, Read, and Robinson found a recurrence relation for the number
of labeled claw-free cubic graphs. They derived a linear partial differen-
tial equation based on removing a single edge which is satisfied by the
exponential generating function (egf) of labeled general cubic graphs [§],
and mentioned that it could be used to derive a recurrence relation for
the number g(s, d, ) of labeled general cubic graphs with s single edges,
d double edges and [ loops. ( The notation g(s, d,!) is used in [3] which
need the variable s instead of 2n in g(2n,1,d). Note that cubic graphs
with 2n vertices (order 2n) satisfy the relation 2n = W. ) Chae,
Palmer, and Robinson [3] did this by extracting coefficients from their
differential equation. Then the recurrence relations for the labeled con-
nected general cubic graphs, and 2-connected general cubic graphs were
provided. The 3-connected general cubic graphs are exactly 3-connected
cubic graphs and the numbers were already found by Wormald[10]. In
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the paper of McKay, Palmer, Read, Robinson[6], the following asymp-
totic estimate was stated: For [, d = o(y/n)

e 2 (6n)! 2t . 24

(1.1) g(2n,1,d) = (1 + o(1)) (3h2n " 93 (3n)! T

The authors mentioned that it can be derived directly by the method of
inclusion and exclusion but they did not provide any proof. So we want
to close this enumeration problems of general cubic graphs exactly and
asymptotically by giving the proof and finding the asymptotic behaviors
of general cubic graphs with given connectivity in this paper. We will
derive an inequality of inclusion and exclusion on two types of properties
in the section 2. In the section 3, we use the method of configurations
to derive the formula (1.1) in all detail for the number of general cubic
graphs with 2n vertices, [ loops, d double edges, and no triples. In the
section 4, the equation (1.1) above can be used to find the total number
of general cubic graphs with 2n vertices by summing up the terms for
loops and double edges from 0 to infinity:

e? (6n)!
(1.2) g(2n) =1+ 0(1))(3!)2n P ()l

Wormald first derived (1.2) in [9] by estimating the number of matrices
with given row and column sums. It could also be obtained from matrix
approximations of Bender and Canfield[1]. Moreover, in the section 5,
the asymptotic numbers of general cubic graphs with given connectivity
are found as consequential results of the formula (1.1). And the results
are summarized in the figure 2. For general graph theoretic terminology
and notation we follow [5] and we assume the basic terminology devel-
oped in [7] for inclusion and exclusion. Chae also derive an inequality of
inclusion and exclusion on finitely many types of properties in [4] which
is a generalization of inclusion and exclusion and you can find another
way to find the formula (1.1) in the paper.

2. Inclusion and exclusion for two types of properties

Let us start with definition of inclusion and exclusion with one prop-
erty. Let U be the universal set of Sy elements, and suppose Ay, ..., As
are s subsets of U. The complement of a set C of U is denoted by C.
For all integer k > 0, k] denote the set {1,2,...,k}. For [ =0,...s, we
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)

define
(2.1) Si=>| A
iel

where the sum is over all I-subsets I of [s]. For [ =0,...s, let N; be the
number of elements of U that belong to exactly [ of the sets {41, ..., A}

That is,
(2.2) N; :Z mAzﬂﬂAz
iel i¢l

where the sum is over all l-subsets I of [s]. Then we can find the following
relation between S; and N,, by considering the contribution of an element

)

to Ny, for u =1,...,s which was already multi-counted for 5.
u
(2.3) Si= > (Z>Nu.
I<u<s

Or we have a relation:
IR
(2.4) Ny = Z (‘*1)Z< . )SI—H-
0<i<s—I v

Then we can have the upper and lower bounds for N; which can be found
in the book [7].

THEOREM 1.
U+
> (=1 ( : )SH—iSNl
(2.5) 0<i<2a-1 v

L+
< (—1)Z< . )Sl+i-
Oﬁizfg:Za L

This is the inequality that can be used to find the bounds for N; by
estimating the sum of Sy ;s’.

Now let us derive an inequality of inclusion and exclusion on two
types of properties. Let U be the universal set of Sy elements, and
suppose that A;j,..., A; and Bs,..., B; are subsets of U. For [ =0 to s
and d = 0 to t, define

(2.6) Sa=Y_|4in () Bl

3 jeJ
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where the sum is over all I-subsets I C [s] and d-subsets J C [t]. Now
for I = 0 to s and d = 0 to ¢, let N; 4 be the number of elements of U
that belong to exactly [ of the sets A; and d of the sets B;. That is,

(2.7) Na=>_|N4anNAn(Bin ()5

il il jeJ j¢J

where the sum is again over all l-subsets I C [s] and d-subsets J C [t].
Then clearly, by counting the contribution to S; 4 of each elements x of
U that contribute to N, ,, for u > 1, v > d, we have

(2-8) Sia = Z (7) (Z)Nu,v-

I<u<s
d<v<t

The numbers S; 4 and N; 4 are closely related, and this relation is neatly
expressed in terms of ordinary generating functions

8 t
(2.9) S(,y) =Y Siaz'y’
1=0 d=0
and
(2.10) N(z,y) = Z ZNl az'y.
1=0 d=0

Then the following proposition can be obtained by the equation (2.8), (2.9)
and (2.10).

PROPOSITION 1.
(2.11) Nz +1,y+1)=S5(z,y).

If we set x =y = —1 in the equation (2.11), we obtain
(2.12) N(0,0) = S(-1,-1).

This is the number of elements in U that belong to none of the sets
Ai,...,As and By,...,B;. Now let z — 1 and y — 1 take the place of
x, y respectively in the equation (2.11) and compare the coefficients of
zly®. One finds that

(2.13) Ng= Y (-1)H (l * Z) (djj> Sttidti-

i
0<i<s~I
0<j<t—d



Asymptotic number of general cubic graphs with given connectivity 1191

It is important to study the upper and lower bounds for N 4. Therefore
we consider truncation

Z (=1)"td <l J; Z) (d ;_ j) Si44,d+j

5
(2.14) - I+d\ [d+j
-2 e (1)) 2 ()
02—;&( ) (z)(g u; l+i/\d+j5/) ™"
0<5<8 v>dtj

where 0 < a < s—1,0 < 8 <t—d and the right side has been obtained
by substitution of (2.8). Now interchange the order of summation and

obtain
U+ (d+
> (—1)“”( . Z) ( . J>Sl+i,d+j
0<i<a ¢ J
0<5<8
(2.15)
:ZN u\ (v Z(_l)iﬂ u—10\[v—d .
u>l o ! d 0<i<ex ¢ ‘7
v>d 0<j<8

It can be seen that:

(0

058
(2.16) (eI, e l+l0>d+
_ 0, ifu>1+1,v=d
(P, fu=1lv>d+1;
1, ifu=1>Lv=d.
So
i (10N (d+
Z ( 1)+J( . )( .J> Ii,d g
0<i<a ¢ J
0<5<8
—1-1
2.17 = 1) LAY
e e 3 (8 ()
u>l41
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(—1)o+B UZ\L; Nu G) (Z) <u _;_ 1) <U . g — 1)'

v>d+1

Ag = ZNu,d< ( l_l)
u>l+1

|
ne ()8

v>d+1

o= 3 %)) (7))

v>d+1

If o and B are both even then the quantity (—1)*A, + (=1)°Bg +
(=1)2+BC, 5 is positive, so that it gives us an upper bound. For a
lower bound, this quantity should be negative. Suppose there are no
such o and 8 which make (—1)*4, + (=1)#Bg + (—=1)**PC, 4 nega-
tive with @ > (s —1—1)/2and 8 > (t —d—1)/2. If o and B are
odd with @ > (s —1 —1)/2 and 8 > (¢t — d — 1)/2, then by assump-
tion, we have (—1)*t1A4,411 + (=1)°Bg + (—1)*P+1Cy11 3 > 0. And
(=1)%A4 + (1)1 Bg 1 + (—1)*tF+1C, g1y > 0. So we have the fol-
lowing

Let

Bg + Cot1,8 < Aatr,
and

Ag + Copi1 < Bgy1.
After adding the inequalities above side by side, we have
(2.18) Ao+ Bg+ Coaq1p+ Copr1 < Aasa + Bpta.
Since @ > (s —1—1)/2 and B > (t — d — 1)/2, we have

("))
(75 > (55)

for allu with {+1 < u < sand d+1 < v <t. Cqy1,8+Co 41 is positive.

Hence the inequality (2.18) cannot be true, we get a contradiction.
Therefore we have the following theorem:

and
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THEOREM 2.
1+ d+j
> (—1)z+]< ; ) ( -]>Sl+z',d+j
0<i<a’ J
0<j<p
(2.19) < Nig
iU\ (d+3
< Z (-1) “( ; )( i )Sl+i,d+j:
0<i<2x
0<5<283

where o’and ' are numbers such that o/ > (s —1 —1)/2 and 3 >
(t-d-1)/2.

This formula will be used to estimate the number of configurations
in section 3 which will be used to calculate the asymptotic number of
general cubic graphs in section 4.

3. Configurations

Here we use an idea of Bollabas[2] for representing general cubic
graphs. Let V = {J;<;<5, Vi be a partition of V into 3-subsets V;, for
i=1,...,2n. A configuration is a perfect matching on this set of ver-
tices. Therefore it is easy to see that the total number of configurations
is
(6n)!

(3.1) T T

Consider any edge uv in V. If both vertices u and v belong to the
same set V; of the partition, the edge is called a 1-cycle. Otherwise they
are contained in two different sets V; and Vj. If there are exactly two
such edges between V; and V;, we call this a 2-cycle, or double edge and
if there are three, it is a triple.

The next lemma shows that although triples are present, their con-
tribution to all of our asymptotic estimates is negligible.

LEMMA 1. Configurations almost surely have no triples.

Proof. The expected number of triples in a configuration is

(2n) a1 6(n— 1)) 23"(371)!'
2 23(n=1)(3(n — 1))! (6n)!
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Elementary operations using Stirlring’s formula in the factorials show
that the expectations is o(1), Therefore, for n — oo, the probability of
a triple in a configuration tends to zero. O

Triples are also negligible when the number of double edges is re-
stricted. Suppose a configuration has d specific 2-cycles(double edges).
Let R be the set of 6n — 6d remaining vertices. The same computation
used in the above lemma shows that triple edges are negligible in R pro-
vided that n — d tends to infinity. Furthermore if d = o(1/n), there are
almost surely no triple edges among the d specified double edges.

Now, for i =1,...,2n, let A; be the set of configurations which have
a l-cycle in V;. Assume the (%’) pairs of sets V; in the partition are
ordered from 1 to (%'). Let B; be the set of configurations which have
a 2-cycle in the j®* pair for j = 1,..., (%"). Let &(2n,1,d) be number of
configurations with exactly [ 1-cycles and d 2-cycles, possibly triples are
included. It will be shown later that they are negligible.

Let S; 4 be the number of configurations which have [ 1-cycles and d 2-
cycles and no triple edges(Let us use same notation S; 4 as in (2.6), since
it is not nebulous). Then S 4 can be found by using the definition (2.6);

_ 2n 1 2d)! o ova
Sta = <l,2d,2n—l—2d)32d-d!(3 2)

(2(3n — I — 2d))!
93n—1-2d_ (3n, — | — 2d)!’

(3.2)

(1+0(1))

where the term (140(1)) allows for a negligible number of triples. From
the equation (2.19), we obtain

Z (—1)**7 (l -l_ Z) (d -]l_ j) Stti,dtj

0<i<a’
0<5i<p’

(3.3) < &(2n,1,d)

i (17 (d+7
< —_ 7'+.7 . ..
< E (-1) ( ; >( j )Sl+z,d+1

0<i<2a
05528
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Then on substituting the equation (3.2) in (3.3) and simplifying we have
(3.4)
1 _(6n) { 5 CUCy

I.dl 237 (3p)! il gl

(14 0(1)) < é(2n,l,d)

0<i<a’
0<j<p’

1 6n)! —1){(—=1)7
(6n) [Z( )i(~1)

= -d 23 (3n)! il - 4!

} (1+0(1)),
0<i<2a
0<5<28

where both [ and d = o(y/n).
Therefore we have:

THEOREM 3. For | and d = o(y/n),

e (6n)!
- di 2% (3n)l"

(3.5) &(2n,1,d) = (1 + o(1))

COROLLARY 1. For large | and d,
1 (6n)!
In-d 2. (3n)l

Proof. When [ and d are arbitrary, the upper bound in (3.4) no longer
holds but instead we have:

(3.6) é(2n,1,d) = O(1)

(3.7)
;s 1 (6n)! (=1)*(=1) | % (2n)x(3n)s
¢@n,bd) < 5 Fm (3 L;:Za T }Gk (6n)ax)
0<j<28
1 6n)!
=00 23n(- Bn)!’

where k = (i + 2j) + (I + 2d) and (n)y = n(n—1)...(n—k+1). In
equation (3.7),

6k . (zn)k(’?’n)k _ 0(1)

(6n)2k
can be obtained with simple estimation by using
(n)k —kz k3
—T_LE— = 0(1) exp % - 6—’]7,—2- s for all k.

Lower bound can be applied similarly. Here we note that if [ + d is

sufficiently large such as a constant times n, 6% - %’Tﬁlﬂ should be

O(1), if not, it goes to 1. O
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COROLLARY 2. Triples are negligible in configurations with exactly
I-cycles and d 2-cycles.

Proof. The proof is similar to the proof of lemma 1 by using the
equation (3.6).

4. Asymptotic number of general cubic graphs

Let ¢(2n,1,d) be the number of configurations with exactly [ 1-cycles
and d 2-cycles and no triples. Since the triple edges are negligible, all
asymptotic results for ¢ hold for c. Let g(2n,l,d) be the number of
labeled cubic general graphs G with exactly [ loops, d double edges, and
no triples. Then we have following relationship between g(2n,!,d) and
¢(2n,l,d) by shrinking the 3-vertex sets V; of configurations to single
vertices for graphs.

PROPOSITION 2.
32\
(4.1) c(2n,1,d) = g(2n,1,d) - 3 - ((2) -2) (31)2n—t=2d,
Then by substituting equations (3.5) and (3.6) in (4.1), we have the
following corollaries.

COROLLARY 3. Forl,d = o(y/n),

e? (6n)t  20.2d
(3N2n 23n. (3p)! U1-dl°

It can be shown that for all [, d:

(4.2) g(2n,l,d) = (1 + o(1))

COROLLARY 4.
1 (6n)!  20.24
(3h)2n  23n.(3p)! I!.d!°

(4.3) 9(2n,l,d) = O(1)

If we sum up the values of ¢g(2n,l,d) using the equation (4.2), we
have the asymptotic number of general cubic graphs on 2n vertices:

COROLLARY 5.

e’ (6n)!

(4.4) 9(2n) = (14 o(1)) B T )
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Proof. When [,d = oy/n), by using the equation (4.2) it easily can
be seen that
e? (6n)!
(312 23n. (3p)!

> g(2n,1,d) = (1+0(1))

l,d>o

For I,d # o(y/n), we can have three cases as followings:
(1) alll, and d > w£: for some wy,
(2) all d, and | > u£: for some u,,,

(3) all I > —L/—f, d > g—f for some wy, u,, where w, and u, go to
infinity very slowly. Since

24 2!
i o(1) and Z i o(1),
dz;{—f >y
It can be shown that
1 (6n)!
Z g(2n, L, d) = O(l) (3!)2n ) 23n . (3n)| ) 0(1)a

120,d> Y2

and, similarly case (2) and (3), from the equation (4.3)

S ogenld = Y g@nld)=01) O ),

31)2n 23n . (3p)!
127 ,d>0 124 d> Yt & o)

Therefore
e? 6n)! 1 6n)!
9(an) = (1 + oL)) fapyzm - o (Z)’m)! O Gy - (i)3n)! o)
So we are done. |

So the equation (1.2), the total number of general cubic graphs with
2n vertices, is derived.

5. Asymptotic number of general cubic graphs with given
connectivity

Let g1(2n) be the number of connected general cubic graphs of order
2n. Then g(2n) and g;(2n) are related by the following sum:

"L 20\ k
5.) o) =3 (51 ) o 2Riten 20
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where g(0) = 1. Therefore we have
-1
91(2n) | = (20 k g1(2k)g(2n — 2k)
2 1= L _
(52) g9(2n) + % 2k)n 9(2n)

To show that almost all general cubic graphs are connected i.e., g(2n) ~
91(2n), we need to show that

2 /20 k g1(2k)g(2n — 2k)
(5.3) kz;l ( 2k) - o) = o(1).
Since k - g1(2k) < n - g(2k), it is enough to show that
n—1
2n\ g(2k)g(2n — 2k)
(5.4) ; (2k> o) = o(1).

By using the equation (4.4), Stirling’s formula, i.e., n! ~ v/2mn(n/e)",
and some simple estimates, we find the left side of equation (5.4) is

n/2 k

F=lmm

5.5 o1 .
9 WY i lem-m
This sum can be estimated by splitting it into two parts according as
k <logn or k > logn. Then we find that for 1 < k& < logn, the value

of the sum is O(n™2) and for logn < k < n/2 it is O(n~!(logn)~/2).
Therefore we have the following theorem.

THEOREM 4. Almost all general cubic graphs are connected.

For convenience, let
___ (!
237 (3n)1(3)2n°
Then the equation (4.4) can be written
(5.7) g(2n) ~ F(n) - €2.

Let gl(2n) be the number of general cubics with at least 1 loop. It follows
from the equation (4.2) with [ = 0 that the number of general cubics
with no loops is asymptotic to F(n). (But from the equation (4.3), we
have O(1)F(n) instead of F(n). Hence the results we get from now on
restricted to the assumptions that are [ and d = o(/n).) Therefore

(5.8) 9(2n) ~ gl(2n) + F(n).

Since gl(2n) ~ (9(2n) — F(n)) = F(n) - €2 — F(n), the number of
general cubics with at least 1 loop is expressed as follows.

(5.6) F(n)
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‘ ......... @ > C‘

H; H,

FI1GURE 1. Graphs H; and H»

ProprosITION 3.
(5.9) gl(2n) ~ F(n)(e* — 1).

Note that almost all general cubic graphs are connected. Hence we
can say that F(n)(e? —1) is the asymptotic number of connected general
cubic graphs with at least one loop and F(n) is the asymptotic number
of connected general cubic graphs with no loops. Note that if a con-
nected general cubic graph has a loop then it has k(G) = 1, i.e., vertex
connectivity one. Now if we show that almost all loopless general cubic
graphs are 2-connected, then it can be said that all general cubic graphs
with £(G) = 1 has at least one loop so the asymptotic number of general
cubic graphs with £(G) = 1is F(n)(e?—1). In order to show that almost
all loopless general cubic graphs are 2-connected, we need to show that
the loopless general cubic graphs with x(G) = 1 are negligible. There
are two kinds of loopless general cubic graphs with x(G) = 1 as shown in
Figure 1. Let us consider the first case - the connected loopless general
cubic graph constructed from type Hy which is the graph with solid line
and dark vertices z, y, s and t not including v and v in Figure 1. Let
G be a connected general cubic graph with 2n vertices and no loops,
rooted at a bridge, say uv. Therefore x(G) = 1. Then let x and y be the
vertices other than v which are adjacent to u, and s and t be the vertices
other than u that are adjacent to v. Since uv is a bridge, z,y,s and ¢
are all distinct. Delete the vertices v and v with incident edges from G
and add new edges zy and st to the graph. Then the graph obtained,
say Hip, is a disconnected general cubic graph with 2n — 2 vertices, no
loops, and two root edges zy and st. In the Figure 1, H; is shown and
G is shown as H;j plus the dotted vertices and edges. This operations
can be reversed, i.e., G can be constructed from H; by adding the two
vertices u and v on the two root edges zy and st.
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It can be seen from the reversal of this construction that the number
of connected general cubic graphs with no loops, rooted at a bridge is
bounded above by

(5.10) <3” ; 3) (9(2n — 2) — g1(2n — 2))2n(2n — 1).

The factor g(2n — 2) — ¢1(2n — 2) counts the number of disconnected
general cubics of order 2n — 2. The binomial coefficient is the number of
ways to choose two edges xy and st in different components. The last
factors account for the number of ways to label the vertices v and v of
a bridge.

Hence (5.10) is also an upper bound for the number of connected
general cubic graphs with no loops and at least one bridge. Therefore
to show that with high probability this do not exist, it is sufficient to
show that

(3n2_3) (9(2n — 2) — g1(2n — 2))2n(2n — 1)

(5.11) = o(1).

Thus we need, since g(2n) ~ F(n)e?,
O(n*)(g(2n—2) —g1(2n —2)) _
(5.12) ) =o(1).

Now g(2n — 2) and ¢1(2n — 2) are related by the following equation

(5.13) g(2n —2)

?’M

(2"’ ) ——1(2k)g(2n — 2k — 2).

On dividing both sides by g(2n) after extract the (n — 1)th term from
the right sum, we have

(5.14) |
g9(2n —2) gl(2n 2 _n_2 2n — k g1(2k)g(2n — 2k — 2)
g(2n) B 22 ( ) n—1 g(2n)
2 ron—2\ k g(2k)g(2n — 2k - 2)
S Pt ( 2k ) n—1 g(2n)
Since
o (91@n—-2) ¢(2n—-2)
o) (2557 - )
(5.15) n/2

g9(2k)g(2n — 2k — 2)
< 0() Z( )
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it is enough to show that right side of this equation is o(1). Using the
formula (4.3), Stirling’s formula and simple estimates, we find that right
side of equation (5.15) is

n/2

1 k ’
(5.16) Z \/— (n—1)32(n— k —1)3/2 [e(n —k— 1)} .

This sum can be estimated by splitting it into two parts according as
k <logn or k > logn. Then we find that for 2 < k < logn, the value of
the sum is O(n™!) and for logn < k < n/2 it is O((logn)~'/?). For the
second case - the connected general loopless graphs constructed from
type Ha, let a graph G which is a connected general cubic graph with
2n vertices and no loops, rooted at a double edge and two single edges
as shown in the right of the Figure 1. Therefore x(G) = 1 also. And
it also can be constructed from the graph Hs rooted at two edges with
2n — 4 vertices by adding 4 vertices, one double and two single edges,
and vice versa as above. We want to show that the number of these
graphs are negligible also. And it is enough to show that

(7% (g2n — 4) — g1 (2n - 4)2n(2n — 1)(2n — 2)(2n — 3) o(1)
F(n) I
This can be done similarly as above. We considered all connected general

cubic graphs with no loops, and xk(G) = 1, and showed that they are
negligible. And we have the following result:

PROPOSITION 4. Almost all loopless general cubic graphs are 2-connec
ted.

COROLLARY 6. The asymptotic number of general cubic graphs G
with kK(G) =1 is

(5.17) F(n)(e? —1).

COROLLARY 7. The asymptotic number of 2-connected general cubic
graphs is F'(n).

In a 3-connected general cubic graph, there are no loops and no double
edges. Note that if a general cubic graph has no loops and no double
edges, then it is just a cubic graph. We know that almost all cubic
graphs are 3-connected ([10]). Therefore by letting [ = 0 and d = 0 in
the equation (4.2), we obtain

(5.18) 9(2n,0,0) ~ F(n) -2,
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General Cubic graphs g@n ~Fme*

(almost surely 1-connected)

No loops (1=0)
No doubles(d=0)
2(2n,0,0) ~ F(n) e”
£(2n,0,0)

g(2n)
a.s. 3-connected (Wormald)
a.s. kappa(G)=3.

At least one loop (1> 0)
~1.83 %

glen) ~ F)(&- 1)

glen 6474
2(2n) ‘ No loops(1=0)
At least one double
a.s. kappa(G)=1. ( d>0 )
F(n)(1 - &%)
11.7%
a.s. 2-connected hence
a.s. kappa(G)=2.
Fn) (6n)! NO LOOPs ~ F(n)
n)= — o
2" Goy)3Y) 13.53%

a.s. 2-connected.

FIGURE 2. Summary

so the asymptotic number of 3-connected general cubic graphs is
(5.19) F(n)-e2.

COROLLARY 8. The asymptotic number of general cubic graphs with
k(G) =2 is F(n)(1 - e72).

These results are summarized in the Figure 2.
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