References
- E. A. Bender and E. R. Canfield, The asymptotic number of labeled graphs with given degree sequences, J. Combin. Theory Ser. A 24 (1978), 296-307 https://doi.org/10.1016/0097-3165(78)90059-6
- Bollabas, A probabilistic proof of an asymptotic formula for the number of labeled regular graphs, European J. Combin. 1 (1980), 311-316 https://doi.org/10.1016/S0195-6698(80)80030-8
- G. Chae, E. M. Palmer, and R. W. Robinson, Counting labeled general cubic graphs, preprint
- G. Chae, Inclusion and Exclusion for finitely many types of properties, submitted
- G. Chartrand and L. Lesniak, Graphs and Digraphs, Chapman & Hall, 2-6 Boundary Row, London, 1996
- B. D. McKay, E. M. Palmer, R. C. Read, and R. W. Robinson, The asymptotic number of claw-free cubic graphs, Discrete Math. 272 (2003), 107-118 https://doi.org/10.1016/S0012-365X(03)00188-2
- E. M. Palmer, Graphical Evolution, John Wiley & Sons, 1985
- E. M. Palmer, R. C. Read, and R. W. Robinson, Counting claw-free cubic graphs, SIAM J. Discrete Math. 16 (2002), 65-73 https://doi.org/10.1137/S0895480194274777
- N. C. Wormald, Some problems in the enumeration of labelled graphs, Doctoral Thesis, University of Newcastle, NSW, Australia, 1978
- N. C. Wormald, Enumeration of labelled graphs II : Cubic graphs with a given connectivity, J. London Math. Soc. (2) 20 (1979), 1-7 https://doi.org/10.1112/jlms/s2-20.1.1
Cited by
- INCLUSION AND EXCLUSION FOR FINITELY MANY TYPES OF PROPERTIES vol.32, pp.1, 2010, https://doi.org/10.5831/HMJ.2010.32.1.113