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THE PROPERTIES OF THE TRANSVERSAL
KILLING SPINOR AND TRANSVERSAL TWISTOR
SPINOR FOR RIEMANNIAN FOLIATIONS

SEOUNG DAL JUuNG AND YEONG BoNG MOON

ABSTRACT. We study the properties of the transversal Killing and
twistor spinors for a Riemannian foliation with a transverse spin
structure. And we investigate the relations between them. As an
application, we give a new lower bound for the eigenvalues of the
basic Dirac operator by using the transversal twistor operator.

1. Introduction

Twistor spinors were introduced by R. Penrose in General Relativity
(119]). In [15], A. Lichnerowicz introduced the twistor operator acting on
the spinors, which is a conformally invariant, and proved that the twistor
spinors are zeroes of the twistor operator. Further, it is remarkable that
the twistor spinors corrrespond to parallel sections in a certain bundle
(see [2], [5]). It is well known ([5], [15]) that given a twistor spinor ¥
there are two interesting conformal scalar invariants C'(¥), Q(¥) which
are constant. Moreover, it was proved that a non-vanishing twistor
spinor W is conformally equivalent to a real Killing spinor if and only
if C(¥) # 0 and Q(¥) = 0. Similarly, we define two transversally
conformal invariants C'(¥),Q'(¥) for a certain Riemannian foliation
(see section 5).

Let (M, gp, F) be a compact Riemannian manifold with a transverse
spin foliation F and a bundle-like metric gps. In [9], the first author
introduced the transversal Killing spinor ¥ given by the equation

(1.1) Vx¥+ fn(X) - U =0, VXeTTM,
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where f is a basic function and 7 : TM — Q is a natural projection(see
(2.1)). And any eigenvalue X of the basic Dirac operator D), satisfies the
inequality

. 25 9
(1.2) A4 > -1
where ¢ = codimF, oV is the transversal scalar curvature and & is
the mean curvature form of . And in the limiting case, M admits a
transversal Killing spinor.

In this paper, we study the properties of transversal Killing spinors
and transversal twistor spinors. Moreover, we investigate the relations
between them in terms of C’'(¥), Q'(¥).

The paper is organized as follows. In Section 2, we review the known
facts on a foliated Riemannian manifold. In Section 3, we introduce the
transversal twistor (resp. W-twistor) spinor defined by the transversal
twistor(resp. W-twistor) equation
(1.3)

1
VxW+-n(X)- Dy = O(resp. Vx ¥+ %I-W(X) D}, = 0), VX € I'TM.

‘el Y 2
111\1/lf(0 + |&[*),

Moreover, we prove that the transversal W-twistor spinors correspond
to parallel basic sections in a certain foliated bundle(cf. [10]). In Section
4, we study the transversal Killing spinor. In Section 5, we define two
transversally conformal invariants C'(¥) and @’(¥), which are similar
to ones on [5]. By these invariants, we investigate the transversally
conformal relation between transversal twistor spinors and transversal
Killing spinors. In Section 6, we estimate the eigenvalue of the basic
Dirac operator, which is sharper than (1.2).

2. Preliminaries and known facts

In this section, we review the basic properties of the Riemannian
foliation ([13], [20]). Let (M, g, F) be a (p+q)-dimensional Riemannian
manifold with a foliation F of codimension ¢ and a bundle-like metric
gm with respect to F. We recall the exact sequence

(2.1) 0-L->TM5Q-0

determined by the tangent bundle L and the normal bundle @ =TM/L
of F. For a distinguished chart i/ C M the leaves of F in U are given
as the fibers of a Riemannian submersion f: U — V C N onto an open
subset V of a model Riemannian manifold N. For overlapping charts
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Ua, NUg, the corresponding local transition functions v = fo © fﬁ_ ! on
N are isometries. Further, we denote by V the transversal Levi-Civita
connection of the normal bundle Q of F. It is defined by

R(X,Y)) VX eTL
(2.2) XS = M _ n
(Vi Ys) vX el'L—,

where s € T'Q, and Y, € TL’ corresponding to s under the canonical
isomorphism L+ 2 Q. The connection V is metrical with respect to g
and torsion free. It corresponds to the Riemannian connection of the
model space N. The curvature RY of V is defined by

RY(X,Y)=VxVy - VyVx - Vixy), ¥ X, Y eITM.

Since i(X)RY = 0 for any X € I'L ([13]), we can define the transversal

Ricci curvature p¥ : I'Q — I'Q and the transversal scalar curvature oV
of F by

PV(X)=3 RY(X,E)Es, 0" =) galp(Ea),Ea),

for X € I'Q, where {E, }4=1,... 4 is a local orthonormal basic frame for
Q. F is said to be transversally Finsteinian if the model space N is
Finsteinian, that is,

(2.3) pY = éa" -id

with constant transversal scalar curvature oV. The mean curvature vec-
tor field of F is defined by

(2.4) K= w(VEE),

i
where {E;}i—1,.. p is a local orthonormal frame for L. Its dual form &,
the mean curvature form for L, is then given by

(2.5) w(X) = go(k!, X), VX eTQ.
Let Q5 (F) be the space of all basic r-forms, i.e.,
Vp(F) = {Y € A"(M)]i(X)¢ =0, 0(X)¢ =0, VX eT'L},

where 0 is the transverse Lie derivative operator. F is said to be minimal
(resp. isoparametric) if k = O(resp. k € QL(F)). It is well known([20])
that on a compact manifold « is closed, i.e., dx = 0 if F is isoparametric.
The cohomology

(2.6) Hp(M/F) = H(Qp(F),ds)
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is called the basic cohomology of F. Note that Q5(F) is a transversal
Clifford algebra with the Clifford multiplication defined as follows: if
¢ € QL(F) and ¢ € Q%L(F), then

(2.7) ¢ =¢ N —i(v)y,

where v is the gg-dual vector to ¢. Let dp be the formal adjoint operator
on Q5 (F) of dp. Then it is written as ([1], [9])

(28)  dg=) 0.AVg, dp=- i(B.)VE, +i(k}),

a

where mﬁB is the gg-dual to the basic component kp of £ ([1]) and 8,

is the gg-dual 1-form to E,. The basic Laplacian acting on Q5 (F) is
defined by ([18])

(2.9) Ap =dgdp + épdp.

Note that Ap corresponds to the ordinary Laplacian of N.

3. Transversal twistor spinors

In this section, we improve some facts in [10] for the transversal
twistor spinor. Let (M, gas, F) be a Riemannian manifold with a trans-
verse spin foliation F and a bundle-like metric gps(see [9] for definition).
Let S(F) be a foliated spinor bundle of F and < -, - > a hermitian scalar
product on S(F). It was considered ([9], [14]) the curvature transform
RS given by

1
(3.1) RY(X,Y)¥ = 1 > 90(RY(X,Y)Eq, By)Ey - Ey - ¥
a,b

for X, Y € I'TM and ¥ € I'S(F), where X - ¥ denotes the Clifford
multiplication of the vector X € @ by ¥. Then it holds ([9])

E.RS _lv
(3.2) > E.-Ey-R (Ea, Ep)¥ = 707 ¥,
a<b
(3.3) 3B B, B0 = 507 (n(X)) - ¥

for X e T'TM. Let m : Q®S(F) — S(F) be the Clifford multiplication.
Then Ker m is a subbundle of @ ® S(F) and there exists a projection
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p:Q ® S(F) — Ker m given by the formula

q
(3.4) p(X®\1/):X®\1/+EZEa<§9Ea-X-\IJ.
q a=1

There are two operators on I'S(F), the transversal Dirac operator Dj,
and the transversal twistor operator Pf. of F, which are defined by

D;, =mo#oV® Pl =poioV5,
respectively, where 7 : [(T*MQS(F)) — I'(Q*®S(F)) = T(QRS(F)) is
the projection and V¥ is the spinor derivation on S(F) induced by (2.2).
If it does not cause any confusion, we will henceforward use V = V¥,
They are locally given by

(3.5) D, ¥ =%"E, VgV, P,U=) E,®P7,
a a

respectively, where Py ¥ = Vx VU + %TI'(X )- D, ¥ for any X e I'TM. It
was shown ([3], [6]) that the formal adjoint Dj* is given by Djf = D}, —&-
and so

1
(36) Dt'r' = D;T — 5/‘6’

is a symmetric, transversally elliptic differential operator. It is well-
known ([6], [9], [12]) that on a compact Riemannian manifold (M, gar, F)
with an isoparametric transverse spin foliation F and a bundle-like met-
ric gps such that dx =0

1
(3.7) D2V =V V¥ + Z(a" + |k|*)¥,

where ViV, U = -5 V2Ea,Ea\Il +V, ¥ and V%/,W =VvVw —-Vv,w
for any V, W € T'T M. From (3.6), we have

1 1
(3.8) DU =DR2V— SAGE D,V + D (x-¥)} - Z|;~@|2\I:.
A direct calculation with (2.7) and (2.8) yields
(3.9) D,.(k- W)+ k- D}V = (dgk + dgk — |k|*)¥ — 2V 4T,
Hence we have from (3.8) and (3.9) the following proposition.

PRrROPOSITION 3.1. Let (M, gy, F) be a compact Riemannian mani-
fold with an isoparametric transverse spin foliation F and a bundle-like
metric gas such that 6k = 0. Then it holds

1
(3.10) D2V = D2v + ZW\I} + V0.
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Similarly, we put

(3.11) Py¥ =) E,® Pg,7,
a

where Px¥ = Vx ¥ + :7(X) - Dy ¥ for any X € I'TM. It is obvious
that for any vector field X

(3.12) Px¥ = Pl — ziqw(X) k.

We define the subspace I'pS(F) of all basic sections of S(F) by
(3.13) IpS(F)={¥ eT'S(F)| Vx¥ =0, VXeTIL}

Then Dy = Dyr|p, s(F) preserves the basic sections if the foliation F is
isoparametric, i.e., & € Q% (F). In this case, D is called the basic Dirac
operator for F. A spinor field of the kernel of P, (resp. kernel of P;,)
is called a transversal twistor(resp. W-twistor) spinor, if it satisfies the

transversal twistor(resp. W-twistor) equation
(3.14)

1
Vx U+ -m(X) Dy ¥ =0 (resp. Vx ¥+ $7T(X)-D£r‘1' =0), X eITM.

It is trivial that KerP}. C ['gS(F).

THEOREM 3.2. If M admits a non-vanishing transversal twistor spinor
W, then F is minimal.

Proof. Let (0 #)¥ € KerPy. be a transversal twistor spinor. Then
we have

0=> E, Pp¥= ZEa-VEa\II-',-%ZEa-Ea-DW\II
a a a

1
= Dy ¥ + 3 ¥ — Dy ¥

1
=§I€'\I’,

which implies that k = 0. Therefore F is minimal. O

REMARK. Theorem 3.2 says that there does not exist a non-trivial
solution of (3.14) if F is not minimal. So in this case it maybe helpful to
consider the operator P},. From (3.12) and Theorem 3.2, any transversal
twistor spinor is a transversal W-twistor spinor. But the converse is not
true in general.
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PROPOSITION 3.3. A spinor field ¥ € KerP}, is a transversal W-
twistor spinor if and only if for any X, Y ¢ TTM

(3.15) m(X)-Vy¥ +1(Y) - Vx¥ = ng(w(X), (YD, 0.

Proof. 1t is easy to verify the sufficiency. Conversely, (3.15) with
Y = E, yields

2 —
Y Eam(X)-VE, ¥+ E, E, Vx¥ = 5LQQ(W(X),EG)E¢Z'D£T\II,
a a a
which follows from (3.5) that
ViU + ;]Iiw(X) DU =0

This means that ¥ is a transversal W-twistor spinor. O

PROPOSITION 3.4. Under the same condition as in Proposition 3.1,
every transversal W-twistor spinor ¥ € KerP,, satisfies

29 q oV
(3.16) DY = -7,
(3.17)
VxD, ¥ =2 { o7 m(X) — pv(ﬂ'(X))} U, VX e TTM.
T 2(g—-2) \2(¢— 1) ’

Proof. Let x € M and choose an orthonormal basic frame {E,} with
the property that (VE,); = 0 for all a. From (3.14), we have at z that
for any transversal W-twistor spinor ¥

1
(3'18) Z anan‘Il + 5
On the other hand, from (3.7) and (3.10), we have

D2¥ = 0.

1
(3.19) D2v = — za:ananqf + ZJV\I/.

Hence (3.16) is obtained by (3.18) and (3.19).
Next, let X € I'T'M be a local vector field arising from a vector in

T, M by parallel displacement along transversal geodesics. Then we have
from (3.14)

(3.20) RS(X,E,)U = é {n(X) VgD,V ~ E,-VxD,U}.



1176 Seoung Dal Jung and Yeong Bong Moon

It follows from (3.3) that
pv(ﬂ'(X)) U= 22 E, - RS(X) E,)¥

a
2
=—- 52 :Ea : {ﬂ'(X) : anDér\Il — Eq .VXD{{T\IJ}
" S

2
== E{(q - Z)VXD;/“I, - 7T(X) : D£12”\Il}a

which, combined with (3.16), follows (3.17). O
Let us define the bundle map K : TM — Q by
1 oV
3.21 K(X)= wX—VwX}
(3.21) 3 = 25 {500 - 57 )

for X € TTM. We consider the bundle E = S(F) & S(F) and the
covariant derivative VZ in E defined by

(3.22) V% < fif ) = ( gfgjg%;((?) -'<I; ) '

Then we have the following proposition.

PROPOSITION 3.5. Under the same condition as in Proposition 3.1,
every transversal W-twistor spinor ¥ satisfies

ef V¥ _
v pye ) =0

Conversely, if ( v ) € TgE is VE-parallel, then ¥ is a transversal

¢
W-twistor spinor and & = D} V.

Proof. Let ¥ € KerP}, be a transversal W-twistor spinor. Then the
definition together with (3.17) gives rise to
e ¥ VxV¥ + in(X)- D} ¥
vE ; = ,a =0.
D, v VxD, ¥ —-1K(X) ¥

Conversely, let (g ) € I'gE be a VE-parallel section. Then we have

VX\II-I-%W(X)-(I):O, for X eTM

and thus 1
> E.-Vg,¥+> -E,-E,-®=0.
a a q
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Hence D, ¥ = ®. This means that ¥ is a solution of the transversal
W-twistor equation. O

On the other hand, we have from (2.9) that for any transversal W-
twistor spinor ¥

1
Ap|¥? = < D{W,¥ > + < ¥, D}V > —2—(1(qav + (g + 1)[x*)| 2
2 1
- a|Db\1/|2 ~ 5{< kU, DU >+ < DU, k-0 >}

From (3.10) and (3.16), we have the following proposition.

PROPOSITION 3.6. Under the same condition as in Proposition 3.1,
every transversal W-twistor spinor ¥ satisfies

q 2 q ARSI 1202 2
323 ‘A ‘I/ = ——0 ‘I/ + — \I’ - D \I/ .

REMARK. On a complete Riemannian manifold with an isoparametric
foliation F, if all leaves are compact, then x is closed([11]). Hence
Proposition 3.1, 3.4, 3.5, and 3.6 are true on a complete Riemannian
manifold with an isoparametric foliation of dx = 0.

4. Transversal Killing spinor

Throughout this section (M, gas, F) is considered as a connected Rie-
mannian manifold with a transverse spin foliation F and a bundle-like

metric gpr. We recall([9]) that U € T'pS(F) is a transversal Killing
spinor if it satisfies

(4.1) ViU =VxU+ fr(X) - T =0
for any X € I'TM and a basic function f(# 0).

LEMMA 4.1. If ¥ is a transversal Killing spinor, then the associated
vector field Xy defined by

Xy=iY <VU,E,-¥>E,
a

is transversal Killing, i.e., (Xy)gg = 0.
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Proof. The definition together with (3.14) implies for Y, Z € I'Q
VyXy=i) Y <U,E,-¥>E,
a

=—if Y {<Y -9,E-¥>+<UE, Y VU >}E,,
a

so that
900(VyXw,Z)=~if{<Y -9, Z- U >+<¥, 7.V U >}
It follows that
(0(Xw)9Q)(Y, Z) = go(Vy Xy, Z) + 9o(Y, VzXy) =0,
which means that Xy is transversal Killing. a

LEMMA 4.2. If ¥ is a transversal Killing spinor, then |¥|? is constant.

Proof. Let ¥ be a transversal Killing spinor such that Vx¥ =
—fr(X)- ¥ for any X € I'TM. Then (4.1) implies
X|U2P=<Vx¥,¥>+<¥ Vx¥ >
=— f{<7(X) - ¥, ¥ >+ < V¥, 7(X) T >}
= 0.
Therefore |¥|? is constant. a
THEOREM 4.3. (9] If M admits a non-vanishing transversal Killing
spinor ¥ with V{T\Il = 0, then
(1) f is constant and f? = ﬁ_—l—).
(2) F is transversally Einsteinian with constant transversal scalar
curvature o¥ > 0.

THEOREM 4.4. If ¥ is a transversal Killing spinor with VI ¥ = 0,
then

v
4.9 P =c (4 v 2 2
(4.2) 1D, 9P = 5 (q* -0 + Ix] >;\1;;

1
(4.3) Re < DU,k - U >= —§|n|2|‘1/]2.

Proof. Let ¥ be a transversal Killing spinor with VQ\II = 0. From
(4.1), we have

(4.9) Dy = fq¥ — -,
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where f2 = quq_v—l) is constant. It follows that
< DV, DU >= < fqU — %KI -, fqU — %K, -0 >
= (f’¢* + i\nﬁ) <0, >,

which prove (4.2). Since < X - ¥, ¥ > is pure imaginary, the equation
(4.3) follows from (4.4). O

From (4.4), we have the following corollary.

COROLLARY 4.5. On the minimal foliation F, every transversal Killing
spinor is an eigenspinor of Dy,

Now we recall the generalized Myers’ theorem.

THEOREM 4.6. (8] Let (M, gar, F) be a Riemannian manifold with a
Riemannian foliation F and complete bundle-like metric gps. If there is
a positive lower bound of the transversal Ricci curvature, then the leaf
spact M /F of F is compact, and the basic cohomology H'(M/F) = 0.

Summing up Theorem 4.3 and Theorem 4.6, we have the following
theorem.

COROLLARY 4.7. Let (M, gpr,F) be a Riemannian manifold with a
transverse spin foliation F and complete bundle-like metric gys. If M
admits a transversal Killing spinor, then the leaf space M/F of F is
compact and H*(M/F) = 0.

5. The conformal relation between transversal twistor and
transversal Killing spinors

Let (M, gum, F) be a compact Riemannian manifold with a transverse
spin foliation F and a bundle-like metric gp;. Now, we consider the
transversally conformal change gg = e®“gg of gg for any real basic
function u on M. Let S(F) be the foliated spinor bundle associated
with go. If <, >¢, and <, >g, denote the natural Hermitian metrics
on S(F) and S(F) respectively, then for any ®, ¥ € I'S(F) we have
([12})

(5.1) <P >, =< P,V >g,,
and the corresponding Clifford multiplication in S(F) is given by
(5.2) X" Uv=X ¥, VXeTIQ.
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Let V(resp. D) be the transversal Levi-Civita connection(resp. transver
sal Dirac operator) corresponding to gg. Then we have the following
proposition.
PRrOPOSITION 5.1. [12] For any X,Y € TTM and ¥ € I'S(F)
(1) Vxn(Y) = Vxa(Y) + X(wn(Y) + Y (u)n(X) - go(n(X),7(Y))
_ gra‘dV(u),
(2) €p¥(X) = p¥(X) + (2~ q)Vxgrady (u) + (2 — q)|grady (u)|*X
) +(q — 2)X (u)grady (u) + {Apu — k¥ (u)} X.
(3) ea¥ = oV + (¢ 1)(2 — g)lgrady (w)|* + 2(¢ — V{Apu — ri(u)}.
(4) Vx¥ = V¥ — %ﬂ'(X) - grady(u) - ¥ — %gQ(gradv(u),ﬂ(X))‘\Tf.
(5) Dy(e~ T 4T) = e~ 4D, 0.

Let _{E’a} be a local orthonormal basic frame associated with gg.
Then Dy, is locally expressed by

—

(5.3) Dyl = D4 & — ~ry = ¥

(&)

for ¥ € T'S(F), where D, ¥ = Y E, - V3 ¥ and k; is the mean
curvature form associated with gg, which satisfies kK5 = e 24k, It follows
from (5.3) that

(5.4) Dy = (D + L grads () 0.

Since Dy, (f¥) = grady(f) - ¥ + f Dy, ¥ for a function f, we have
(5.5) D (f9) = e “grady(f) - ¥ + fDi, ¥,

so that

(5.6) Dér(e‘%lulif) = e;%“m.

Therefore we conclude that the dimensions of the kernel of Dy, and Dj,
are transversally conformal invariants.

Let P, be the transversal W-twistor operator of g = 9. @ 7gqg, where
Jdg = engQ for a basic function u. A similar way shows the following
proposition.

PROPOSITION 5.2.. For any spinor field ¥ € I'gS(F), we have
P (e3¥) = ¢ 3P, 0.
In particular, ¥ ¢ FBS(]-' ) is a transversal W-twistor spinor on (M, gar)
if and only if e2¥ € T'gS(F) is a transversal W-twistor spinor on

(M7gM)
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On the vector space KerP},, there exist a quadratic form C’ and a
form @' defined by
(5.7) C'(¥) = Re < D, 0, ¥ >:= (D, ¥, T)

(58  Q¥)=[VPDLYP - C'(¥)° =) (D}, B, 0)?

a
for ¥ € KerP], (see [5] for the point foliation). It is obvious that
C'(¥) = (D4, ¥, ¥). By using (5.3), (5.4), and (5.5), a direct calculation
implies
(5.9) (e 2) = (W), Q(e0) = Q(W).

Hence we have the following theorem.

THEOREM 5.3. Let (M, gps, F) be a compact connected Riemannian
manifold with an isoparametric transverse spin foliation F and a bundle-
like metric gpr such that dk = 0. Then for any transversal W-twistor
spinor ¥, C'(¥) and Q' (V) are transversally conformal invariants with
respect to U — e%/2J. Moreover they are constant.

Proof. The first statement follows from (5.9). Next, if we differentiate
C'(¥) with respect to X € IT'TM, then
VxC'(¥) = (Vx D, 0, ) + (D) ¥, VD).
From (3.14) and Proposition 3.4, we have

! (]0’v
VxC'(¥) :m(ﬂp{) 0, )
g 1, /
-5 3P (TX) - W) - (D}, ¥, w(X) - D),

which deduces that C’(¥) is constant. Moreover,
VxQ'(¥) = 2(Vx ¥, )| D, ¥ “(Vx D, ¥, D}, ¥)
—22 (D}, Y, E, - ¥)(Vx D, ¥, E, - T)

- a Z(DZT\II’ Ey - \Ij)(Ea ’ Dgr‘ll7 W(X) ’ DQT\IJ)
Q
By a long calculation together with Propositon 3.4, we obtain VxQ'(¥)
=0. [l
Given a spinor ¥, we define the associated vector field 77 by

(5.10) TV =2 (V,E, - D}, W)E,.
a
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Assume that ¥ is a non-vanishing transversal W-twistor spinor. Then
(5.11) TV = —¢ gradyw,

where w = |¥|?. On the other hand, we have from (5.10)

(5.12) IC'(¥)¥ — wD), ¥ — %T‘I' O = wQ (D),

Hence if ¥ satisfies C’'(¥) = 0 = Q'(¥), then (5.11) and (5.12) imply
(5.13) wD), U = g grady (w) - 0.

Hence we have the following proposition.

PROPOSITION 5.4. Under the same condition as in Theorem 5.3, if
M admits a non-vanishing transversal W-twistor spinor ¥ such that
C'(¥) = 0=Q'(V), then F is transversally conformally equivalent to a
transversally Ricci-flat foliation on (M, gar) with parallel basic spinor.

Proof. Consider the metric gy = g1 + g, where gg = e*gg with
v = —Inw and w = |¥|2. Then Proposition 5.1(4) gives rise to

§X(w_%\il) = VX(w_%\.II) - —21—w_%7r(X) -grady (u) - ¥

- %w“%X(u)\Tl

— W H{Vx U+ %W(X) - grady (w) - T}
for X e I'TM. It follows from (3.14) and (5.13) that
Vx(w ) =0.

That is, ® = w_%\fl_ is a parallel basic spinor with respect to the metric
gum. From (3,3), pV(n(X))® = 3, E;R%(X,E,)® = 0. Therefore F
on (M, gar) is transversally Ricci-flat. ' U

PRrROPOSITION 5.5.. Under the same condition as in Theorem 5.3, every
non-vanishing transversal W-twistor spinor ¥ satisfies

g{wAB(lnw) — kh(w)} + Q(i—;mmradep

— q O'V'w—-l— / ' 2
= Y QW)

where w = |W|2,
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Proof. Let (0 #)¥ € KerP}, be a transversal W-twistor spinor. From
(5.8) and (5.10), we have

(5.14) Q') = wl DU - () — LTV

Since Ap(Inw) = 2 |gradyw|? + 2Apgw, (5.11) implies

1

(5.15) Ap(lnw) = [TV + lABw.
w w

PR
On the other hand,
<k-DLO¥>+ <V k- DT>
=—g{Va¥, ¥ >+ < V4T >}
= — qr*(w),
and thus

gﬁﬁ(w)‘

1
(5.16) |DyV |2 = |D] ¥J? + Z|l€|2w -5

From (3.23), (5.15), and (5.16), we have

N T2 v 2 2
(5.17) Ap(lnw) = WlT ”+ oV + —kf(w) - q—wlDir‘I’l ;

2(¢—1) w
which completes the proof by using (5.13) and (5.14). O

A spinor field ¥ is said to be transversally conformally equivalent
to a transversal Killing spinor if there exists a transversally conformal
change gy = g1 + engQ such that ez U is a transversal Killing spinor
with respect to gas. This is equivalent that for any X € I'TM

(5.18) Vx(e20) + an(X)-(e2¥) = 0,
where a(# 0) is a real number. Then we have the following theorem.

THEOREM 5.6. Let ¥ € KerP}, be a non-vanishing transversal W-
twistor spinor. Then W is transversally conformally equivalent to a
transversal Killing spinor if and only if C'(¥) # 0 and Q'(¢) = 0.

Proof. Let ¥ € KerP}, be transversally conformally equivalent to a
transversal Killing spinor with respect to gg = e*gg. (5.18) is equiva-
lent to

1
(5.19) VxV¥ = §7r(X) cgradou - ¥ — aen(X) - ¥
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for X € I'TM, where a(# 0) is a real number. Now if we choose u =
—Inw, then (5.19) implies

(5.20) %wDQT\I! = %grade ¥ +aV¥,
which follows from (5.7) and (5.20) that
(5.21) C'(¥) = qa # 0.
On the other hand, (5.20) gives rise to
2
(5.22) w| D}, T = qz|grade|2 + ¢%a.

From (5.8), (5.11), (5.21), and (5.22), we obtain Q'(¥) = 0.
Conversely, we consider a non-vanishing transversal W-twistor spinor
¥ with C'(¥) # 0 and Q'(¥) = 0. Then (5.12) implies

(5.23 c’wqf—wp'\p—lcr@-qf:o,
tr 2
and hence by (5.11)
(5.24) C'(O)¥ — wD!, ¥ + Lgradgw - ¥ = 0.
tr 2 v

If we choose u so that w = g;ia@e““, then (5.23) and (5.24) show that

¥ satisfies (5.18). This means that ¥ is transversally conformally equiv-
alent to a transversal Killing spinor. O

6. Eigenvalue estimates

In this section, let (M, gas, F) be a compact connected Riemannian
manifold with a transverse spin foliation F and a bundle-like metric gps
such that the mean curvature form x satisfies Agx = 0. The existence of
a bundle-like metric gps for (M, F) such that & is basic, i.e., & € QL(F),
is proved in [4]. Given a bundle-like metric gps with k € QL(F), it is
assured ([16], [17]) that there exists another bundle-like metric whose
mean curvature form is basic harmonic.

By a straightforward calculation, we have that for ¥ € I'S(F)

1
(6.1) 1P = |Ver O ~ EIDZ,«‘I’I?
It follows from (3.7) that

1 1
(6.2) / |P;,U)? = / {|Dtr‘1’|2 - K| - _|D£r\1l|2} ;
M M 4 q
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where K% = ¢V + |x|2. Since

(6.3) |D: ¥ = | D, W% — i}n]2|\11|2 — Re < DU, k- ¥ >
we have from (6.2) and (6.3) that

rert st g o))

+/ Re < Dy W, 50 > .
M

Let Dp¥ = AU. Then (6.4) becomes

(6.5) /|P"\1/|2 —/{ 15 <K"+$m[2)}(\m2.

Hence we have the following theorem (cf.[lO]/.

THEOREM 6.1. Let (M, gpr, F) be a compact connected Riemannian
manifold with a transverse spin foliation F of codimension q¢ > 2 and
bundle-like metric gas such that Agk = 0. Then any eigenvalue X of the
basic Dirac operator D, satisfies

q . L o2

6.6 N> —inf{ K®+~ :
(66) _4(q—1)%< +qm)
In the limiting case, F is minimal, transversally Einsteinian with con-
stant transversal scalar curvature oV .

Proof. 1t suffices to investigate the limiting case that F admits a
non-vanishing spinor field ¥ such that D,¥ = A\¥. From (6.5), we see
P} W = 0. Since D}, ¥ = AV + 1k - ¥, we have from (3.14)

A 1
6.7 Vx¥=—-"7(X)-¥V——7(X) k- ¥
(6.7 X == 2n(x) W - on(x)

for X € I'TM. 1t follows from (3.10) and (3.16) that F is minimal.
Therefore Theorem 4.3 says that F is transversally Einsteinian with
constant transversal scalar curvature oV > 0. 0
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