DOI QR코드

DOI QR Code

THE PROPERTIES OF THE TRANSVERSAL KILLING SPINOR AND TRANSVERSAL TWISTOR SPINOR FOR RIEMANNIAN FOLIATIONS

  • Published : 2005.11.01

Abstract

We study the properties of the transversal Killing and twistor spinors for a Riemannian foliation with a transverse spin structure. And we investigate the relations between them. As an application, we give a new lower bound for the eigenvalues of the basic Dirac operator by using the transversal twistor operator.

Keywords

References

  1. J. A. Alvarez Lopez, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), 179-194 https://doi.org/10.1007/BF00130919
  2. H. Baum, T. Friedrich, R. Grunewald, and I. Kath, Twistor and Killing Spinors on Riemannian Manifolds, Seminarbericht Nr. 108, Humboldt-Universitat zu Berlin, 1990
  3. J. Bruning and F. W. Kamber, Vanishing theorems and index formulas for transversal Dirac operators, A.M.S Meeting 845, Special Session on operator theory and applications to Geometry, Lawrence, KA; A.M.S. Abstracts, Octo- ber, 1988
  4. D. Dominguez, A tenseness theorem for Riemannian foliations, C. R. Acad.Sci. Ser. I 320 (1995), 1331-1335
  5. T. Friedrich, On the conformal relation between twistors and Killing spinors, Suppl. Rend. Circ. Mat. Palermo (1989), 59-75
  6. J. F. Glazebrook and F. W. Kamber, Transversal Dirac families in Riemannian foliations, Comm. Math. Phys. 140 (1991), 217-240 https://doi.org/10.1007/BF02099498
  7. K. Habermann, Twistor spinors and their zeros, J. Geom. Phys. 14 (1994), 1-24 https://doi.org/10.1016/0393-0440(94)90051-5
  8. J. J. Hebda, Curvature and focal points in Riemannian foliation, Indiana Univ. Math. J. 35 (1986), 321-331
  9. S. D. Jung, The first eigenvalue of the transversal Dirac operator, J. Geom. Phys. 39 (2001), 253-264 https://doi.org/10.1016/S0393-0440(01)00014-6
  10. S. D. Jung, Basic Dirac operator and transversal twister operator,, Proceedings of the Eighth International Workshop on Differential Geometry 8 (2004), 157-169
  11. J. S. Pak and S. D. Jung, A transversal Dirac operator and some vanishing theoerems on a complete foliated Riemannian manifold, Math. J. Toyama Univ. 16 (1993), 97-108
  12. S. D. Jung, B. H. Kim, and J. S. Pak, Lower bounds for the eigenvalues of the basic Dirac operator on a Riemannian foliation, J. Geom. Phys. 51 (2004), 166-182 https://doi.org/10.1016/j.geomphys.2003.10.004
  13. F. W. Kamber and Ph. Tondeur, Harmonic foliations, Proc. National Science Foundation Conference on Harmonic Maps, Tulane, Dec. 1980, Lecture Notes in Math. 949, Springer-Verlag, New York, 1982, 87-121
  14. H. B. Lawson, Jr. and M. L. Michelsohn, Spin geometry, Princeton Univ. Press, Princeton, New Jersey, 1989
  15. A. Lichnerowicz, On the twistor-spinors, Lett. Math. Phys. 18 (1989), 333-345 https://doi.org/10.1007/BF00405265
  16. P. March, M. Min-Oo, and E. A. Ruh, Mean curvature of Riemannian foliations, Canad. Math. Bull. 39 (1996), 95-105 https://doi.org/10.4153/CMB-1996-012-4
  17. A. Mason, An application of stochastic flows to Riemannian foliations, Houston J. Math. 26 (2000), 481-515
  18. E. Park and K. Richardson, The basic Laplacian of a Riemannian foliation, Amer. J. Math. 118 (1996), 1249-1275 https://doi.org/10.1353/ajm.1996.0053
  19. R. Penrose and W. Rindler, Spinors and Space Time, Cambr. Mono. in Math. Physics, 2 (1986)
  20. Ph. Tondeur, Foliations on Riemannian manifolds, Springer-Verlag, New-York, 1988

Cited by

  1. TRANSVERSAL KILLING AND TWISTOR SPINORS ASSOCIATED TO THE BASIC DIRAC OPERATORS vol.25, pp.08, 2013, https://doi.org/10.1142/S0129055X13300112