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R-HOMOMORPHISMS AND R-HOMOGENEOUS MAPS
YonNnGg Uk CHO

ABSTRACT. In this paper, all rings and all near-rings R are asso-
ciative, all modules are right R-modules. For a near-ring R, we
consider representations of R as R-groups. We start with a study
of AGR rings and their properties.

Next, for any right R-module M, we define a new concept GM
module and investigate the commutative property of faithful GM
modules and some characterizations of GM modules. Similarly, for
any near-ring R, we introduce an R-group with M R-property and
some properties of M R groups.

1. Introduction

Throughout this paper, for an associative ring R(a near-ring R), we
will consider M is a right R-module(G an R-group). We begin with a
study of AGR rings and their properties.

Next, for any group G and a nonempty subset S of End(G), we know
the centralizer near-ring of S and G as C(S;G) = {f € M(G)| af =
foa, Ya € S5}, and for a nonempty subset S of the distributive elements
on G, we can define the centralizer near-ring of S and a unitary R-group
G. Furthermore, we will show that if R is a unitary semisimple ring and
M a unitary right R-module, then Mg(M) is a semisimple near-ring.

Finally, for any right R module M, we define a new concept GM
module and investigate the commutative property of faithful GM mod-
ules and some characterizations of GM modules. Also, for any near-ring
R, we introduce an R-group with M R-property and some properties of
MR groups as analogous properties of GM modules.
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A near-ring R with (R, +) abelian is called abelian. An element d in
R is called distributive if (a + b)d = ad + bd for all @ and b in R.

We consider the following notations: Given a near-ring R, Rg = {a €
R | 0a = 0} is called the zero symmetric part of R, R, = {a € R | 0a =
a} is called the constant part of R, and Rq = {a € R | a is distributive}
is called the distributive part of R. We note that Ry and R, are subnear-
rings of R, but R, is not a subnear-ring of R.

Let (G,+) be a group(not necessarily abelian). We will use right
operations(that is, operations on the right side of the variables) in the
near-ring case to distinguish from left operations in the ring case in this
paper. In the set

M(@G):={f|f:G— G}

of all self maps of G, if we define the sum f + g of any two mappings f, g
in M(G) by the rule z(f+g) = zf+xg for all x € G (called the pointwise
addition of maps) and the product f - g by the rule z(f - g) = (zf)g for
all x € G, then (M(G),+,-) becomes a near-ring. It is called the self
map near-ring of the group G. Also, if we define the set

Mo(G) := {f € M(G) | of = 0}

for the additive group G with identity o, then (My(G),+,-) is a zero
symmetric near-ring.

Let R be a near-ring and G an additive group. Then G is called an
R-group if there exists a near-ring homomorphism

6 : (Rv +") - (M(G)) +a')'

Such a homomorphism 8 is called a representation of R on G, we write
zr (right scalar multiplication in R) for z(6,.) for all z € G and r € R.
If R is unitary, then R-group G is called unitary. Note that R itself is
an R-group called the regular group.

Naturally, every group G has an M(G)-group structure, from the
representation of M(G) on G given by applying the f € M(G) to the
x € G as a scalar multiplication z f.

An R-group G with the property that for each z, y € G and a € R,
(x+y)a = za+ya is called a distributive R-group, and also an R-group
G with (G, +) is abelian is called an abelian R-group. For example, if
(G, +) is abelian, then M (G) is an abelian near-ring and moreover, G is
an abelian M (G)-group. On the other hand, every distributive near-ring
R is a distributive R-group.
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A near-ring R is called distributively generated (briefly, D.G.) by S
if (R,+) = gp(S) = gp(Ry) where S is a semigroup of distributive
elements in R, in particular, S = Ry(this is multiplicatively closed and
contain the unity of R if R is unitary), and gp (S) is a group generated
by S. This D.G. near-ring R which is generated by S is denoted by
(R,S).

On the other hand, the set of all distributive elements of M(G) are
obviously the set End(G) of all endomorphisms of the group G, that is,

(M(G))a = End(G)

which is a semigroup under composition, but not yet a near-ring. Here
we denote that E(G) is the D.G. near-ring generated by End(G), that
is,

E(G) = gp (End(G)).

Obviously, E(G) is a subnear-ring of (My(G), +,-). Thus we say that
E(G) is the endomorphism near-ring of the group G.

For the remainder basic concepts and results on ring case and near-
rings case, we refer to [1], [16], and [18].

2. Properties of generalized AR rings

We begin to study a class of rings in which all the additive endo-
morphisms or only the left multiplication endomorphisms are generated
by ring endomorphisms. This research was motivated by the work on
Sullivan’s Research Problem (that is, characterize those rings in which
every additive endomorphism is a ring endomorphism, these rings are
called AR rings (3], [4], [6], [7], [8], [10] and [19], and the investigation
of LSD-generated rings and SD-generated rings [3] and [9]. Now, we
introduce some generalizations of AR rings.

At first, a ring R is said to be an AGR ring if every additive endo-
morphism is generated by ring endomorphisms, that is,

End(R,+) = gp (End(R, +,-))

Clearly, we see that every AR ring is AGR, but not conversely from
Example 2.4. Note if the left regular representation of R into End(R, +)
is surjective, then R is an AGR ring.

Putting L(R) is the {z € R| zab = zaxb, V a, b € R} of all left self
distributive elements in R and R(R) is the {z € R| abxz = axbz, Va, b€
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R} of all right self distributive elements in R. (L(R),-) and R(R) are
subsemigroups of (R,-). Note that £(R) contains all one-sided unities
and all central idempotents of R.

A ring R is called LSD (resp. LSD-generated) if R = L(R) (resp. R =
gp(L(R))), similarly for RSD and RSD-generated. R is called SD (resp.
SD-generated) if R = L(R) N R(R) (resp. R = gp(L(R) N R(R)). The
classes of LSD, LSD-generated, SD and SD-generated rings are closed
with respect to homomorphisms and direct sums, and the class of AGR
rings is not contained in the class of SD-generated rings [3], [9]. Z(R)
and N(R) denote the set of idempotent elements of R and the set of
nilpotent elements of R, respectively.

Notice that R is an AGR ring if and only if there exists a subsemi-
group S of End(R, +,-) such that End(R, +) = gp(S). Sometimes, we
use the other notations: Endz(R) instead of End(R, +), End(R) instead
of End(R, +, ) and GE(R) instead of gp (End(R, +, -)).

We will use the following several notations: For each z € R, ,7
denotes the left multiplication mapping(that is, a — za,Va € R)
and T(R) is the set {,7| z € R}. Clearly ,7 € End(R,+) and = €
L(R) if and only if ;7 € End(R,+,-). LGE(R) is the {x € R| .7 €
gp(End(R,+,-))}. Also, L(R) C LGE(R).

A ring R is called almost AR ring if every left multiplication endo-
morphism is a ring endomorphism, that is, 7(R) C End(R, +, -).

The following two statements are very easily proved, but these are
the basis of the notions of almost AR rings and AGR rings.

LeEMMA 2.1. Let R be any ring. Then we have the following:
(1) T(R) is a subring of Endz(R);

(2) GE(R) is a subring of Endz(R);

(3) LFGE(R) is a subring of R.

PROPOSITION 2.2.

(1) Every LSD ring is an almost AR ring.
(2) Every AR ring is an almost AR ring.

The following statement is a special case of a characterization of AGR
rings, v

PROPOSITION 2.3. For every AGR ring R, and for any positive in-
teger n, we get that ®_,R; is an AGR ring, where R; = R, for all
i=1.2....n.
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Proof. We prove the case for n = 2, that is, R ® R . Similarly, we
can prove for the case n > 2. We must show that

Endz(R® R) = GE(R® R).
Since Endz(R & R) = Matz(Endz(R)), we obtain that

_ [Endg(R) Endz(R)] [GE(R) GE(R)
Bndz(R & R) = [EndZ(R) EndZ(R)} = [GE(R) GE(R)

Let f € Endz(R & R) such that

_ | fu1 fi2 N
/= [f21 fzz]’ fij € GE(R).

Then
fu= Z)"'h’i’ fra = Z/\jhj> far = ZAkhka fa2 = Z)\tht,
@ J k t
where, \'s € Z and h's € End(R). Thus f is expressed of the form
_ |hs O [0 Ry 0 0 0 0
f“zk’[o o%ZAJ [0 0J+;A’“ [hk o]*zt:“[o ht}
* J

. h; 0 0 hj 0 0 0 0 .
Smceall[o O}’[O 0], B 0:|,and [0 ht] are ring endomor-

phisms of R® R, R® R is an AGR ring.

EXAMPLE 2.4. [3] Rings additively generated by central idempotents
and one sided unities are LSD-generated and RSD-generated, so that
SD-generated. In particular, since the rings Z and Z, are additively
generated by 1, and Endz(Z) = Z,Endz(Z,) = Z,, we see that Z and
Z,, are both AGR, LSD-generated and SD-generated rings. However,
Z and Z, are not AR rings except for the cases Z; and Z,, because
any nontrivial endomorphism on Z or Z,, is additive but which is not a
ring endomorphism. On the other hand, if x € £L(R) implies 2° = 2"
for n > 3, then £(S) = {0} for any nonzero proper subring S of Z.
Hence any nonzero proper subring of Z is an AGR ring which is not
LSD-generated and SD-generated.

Proposition 2.3 and Example 2.4 show that there are many examples
of AGR rings and LSD-generated rings. Obviously, we get the following
useful lemma;
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LEMMA 2.5. For any surjective ring endomorphism h, L(R) and
R(R) are all fully invariant under h.

From this lemma, we get the following statement.

PROPOSITION 2.6. Let R be a ring with unity. If R is an AGR ring
with S C End(R) such that Endz(R) = gp(S), and each element of S
is onto, then R is LSD-generated, moreover SD-generated.

Proof. Let x € R. Consider the left translation mapping ¢, : B —
R by ¢5(a) = za for all @ € R, which is a group endomorphism. Since
R is an AGR ring, ¢ = Y ; \;h;, where \; € Z and h; € S such that
h; is onto, for i = 1,2,--- ,n. Since 1 € R, ¢,(1) = >0 A\;h;(1), that
is, z = Y . Aihi(1), and since 1 € L(R) N R(R) by Lemma 2.5, we have
hi(1) € L(R) N R(R). Hence R is LSD-generated and RSD-generated,
so is S D-generated. O

3. R-homomorphisms and R-homogeneous maps

Hereafter, we can introduce similar notions of AR rings or almost AR
rings in right R-modules and R-groups. First, we introduce a new con-
cept GM-property of a right R-module and investigate it’s properties.

For any ring R, right R-modules M and N, the set of all R-module
homomorphisms from M to N is denoted by Homg (M, N) and the set
of all group homomorphisms from M to N is by

Hom(M, N) := Homz(M, N),

in particular, we denote that Endgr(M) := Homg(M, M) and End(M) :
= Endz(M) = Homz(M, M). In this case, M is called a GM module
over R if every group homomorphism of M is an R-module homomor-
phism, that is,

End(M) = Endgr(M).

In particular, R is called a GM ring if R is a GM module as a right R-
module, that is, for all f € Endz(R), z, r € R, we have f(zr) = f(z)r.
For example, Q is a GM module, because of Endz(Q)=Q=Endg(Q).

PROPOSITION 3.1. Let {M;|i € A} be any family of right R-modules.
Then each M; is a GM module for all i € A if and only if M := ®M,; is
a GM module.
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Proof. Suppose each M; is a GM module for all i € A. Let f €
End(M). Consider canonical epimorphism =; : §M; — M; and canon-
ical monomorphism k; : M; — ®M; as usual meaning in module theory.
Define f; € End(M;) as f; = m; o f o k;. Then by assumption, f; is an
R-module homomorphism.

To show that f is an R-module homomorphism, we must show that
forallz € M,r € R,i € A,

mi(f(ar)) = mi(f(z)r).

Indeed, since f; = ;0 fok; and ), 5 (ki 0om;)x = z for any x € M, we
have

w0 f(ar) =m0 f(3 (ki o m)(ar) = Ym0 f o ki o miler)

i€A i€
= Zfi omi(zr) = Z fi(mi(z)r) = Z(fz‘ omi){(z)r
i€A i€A i€A
= Zm o foriom(z)r =mo f(Z(’%’ o m)(x))r
i€ i€
=m; o f(x)r.

Hence (f(zr)) = (f(z)r), for all z € M,r € R. Consequently, M = ®M;
is a GM module.

Conversely, let g; € End(M;) and let z; € M;, r € R, Consider,
x = (x;)ier = (x;) € ®M;, where z; € M;, x; = 0 except finitely
many 7 € A. We can define a function f : ®M; — ®M; by f(z) =
(9i(®i))ien = (gi(z1)).
Let z, y € M, by the above notation. Then
flE+y) = f(zit+u) = (gi(zi+w:) = (9i(2:)) +(9: () = F(z)+ f ()
Since M := &M, is a GM module, above equalities implies that f €
End(M) = Endr(M).
From this fact, since
flar) = f((z)r) = f((zir)) = (gs(i7))
and
f@)r = f((za))r = (gi(za))r = (gi(zi)r),
we derive that
gi(zir) = (gi(zi)r)

for all ¢ € A; that is, g; € Endr(M;). Therefore each M; is a GM
module. O



1160 Yong Uk Cho

PROPOSITION 3.2. Let R be a GM ring. Then for any x € R, zR is
a GM ring. Furthermore, this xR is also a GM module as an R-module.

Proof. Let f € End(zR), and g : R — R be defined by g(a) = f(za)
for all @ € R. Then g € Endz(R). This implies that g(axb) = g(a)xb,
because Endz(R) = Endg(R). So we have

f(zaxdb) = g(axb) = g(a)zb = f(za)xb.

Hence, for any z € R, xR is a GM ring. Obviously, we can check that
zR is a GM module as an R-module. O

Applying Propositions 3.1 and 3.2, we obtain the following:

COROLLARY 3.3. Let R be a GM unitary ring. Then all finitely

generated right ideals and all direct sums of principle right ideals are
GM rings.

From the faithful GM-property, we get a commutativity of rings.

PROPOSITION 3.4. Let M be a right R-module. If M is a faithful
GM module, then R is a commutative ring.

Proof. Let f € End(M) and let a,b € R, where f(z) = za, for all
x € M. Then

f(zb) = (zb)a.
On the other hand, since f € End(M) = Endg(M), we have that
f(ab) = £(@)b = (za)b.

Hence (zb)a = (za)b for all x € M. Since M is faithful, so we see that
ab = ba. O

Next, we shall treat a D.G. near-ring R generated by S and a faithful
R-group G. Furthermore, there is a module like concept as follows: Let
(R, S) be a D.G. near-ring. Then an additive group G is called a D.G.
(R, S)-group if there exists a D.G. near-ring homomorphism

9 : (R,S) — (M(G),End(G)) = E(G)

such that S C End(G). If we write that zr instead of z(6,.) forallz € G
and r € R, then an D.G. (R, S)-group is an additive group G satisfying
the following conditions:

z(rs) = (zr)s, z(r +s) =zr+xs, (x+y)s =2x5+ys,
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forallz, ye Gandallr, sc S.

Such a homomorphism 6 is called a D.G. representation of (R, S) on
G. This D.G. representation is said to be faithful if Kerf = {0}. In this
case, we say that G is called a faithful D.G. (R, S)-group [11], [12], [17],
[18].

Let G, T be two additive groups (not necessarily abelian). Then the
set

MG, T):={f|f:G — T}

of all maps from G to T becomes an additive group under pointwise
addition of maps. Since M(T') is a near-ring of self maps on T, we note
that M(G, T) is an M(T)-group with a scalar multiplication:

M(G, T) x M(T) — M(G, T)

defined by (f, g) — f - g, where z(f - g) = (xf)g for all x € G.

Let G and T be two R-groups. Then the mapping f : G — T
is called a R-group homomorphism if for all , y € G and a € R, (i)
(x+y)f = of +yf and (ii) (za)f = (xf)a. In this paper, we call
that the mapping f : G — T with the condition (za)f = (zf)a is an
R-homogeneous map (or simply, R-map) [15]. We define the set

Mgr(G, T):={f e MG, T)| (zr)f = (zf)r, Vz €G, r € R}

of all R-homogeneous maps from G to T
For any near-ring R and R-group G, we write the set

Mg(G) :={f € M(G)| (zr)f = (zf)r, Vz € G, r € R}

of all R-homogeneous maps on G as defined previously.

On the other hand, an element a € R is said to distributive on G
if (x4 y)a = za + ya for all z, y € G. Putting Dg(G) the set of
all distributive elements on G, Dgr(G) becomes a ring whenever G is
abelian. For example, every unitary abelian near-ring contains a unitary
ring.

The following two statements are motivation of M R-property of R-
groups.

LEMMA 3.5. Let G be an abelian D.G. (R, S)-group. Then the set
Mg(G) :={f € M(G)| (ar)f = (zf)r, Yz € G, r € R} is a subnear-
ring of M(G).
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Proof. Let f, g € Mgr(G). For any z € G and r € R, since R is a
D.G. near-ring generated by S, consider that

n
r= Z&'%
i=1
where §; =1, or —1 and s; € S for i = 1,--- ,n. We have that

(zr)(f +9)
= (zr)f + (zr)g
= (zf)r + (zg)r

=zaf (Z 5¢$i> +zg (Z 6isi>

i=1 i=1
= xfb151 + 290151 + £ fd282 + xgdasa + - - + X fdnSn + GO Sn
= §1x2fs1 + 0129s1 + Sz fso + doxgss + -+ + 0nZfSy + 6nTgSn
= §1(zfs1 +xgs1) + d2(zfsa +xgsa) + - -+ + On(xfSp + TgSn)
= 0i1(azf +xg9)s1 + d2(zf +xg)sa + -+ + on(xf + 29)sn
= (xf +zg)0151 + (xf + g)dasz + -+ (zf + xg)dnsn

= (zf + zg) (Z 5i8i>

= (zf + zg)r
= z(f + g)r.

Similarly, we have the following equalities:

(@r)(=f) = —(zr)f = —(&f)r = =(=f)r

and
(@r)f -9 = ((zr)f)g = (=f)r)g = (zf)gr = =(f - g)r.
Thus Mg(G) is a subnear-ring of M(G). O

On the other hand, for a group G and a nonempty subset S of End(G),
we define the centralizer of S in G as following;:

O(5:G) = {f € M(C)| of = faV a € S},
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which is a subnear-ring of M(G), we say that C(S; Q) is the centralizer
near-ring of S in G. This is an extended concept of centralizer near-
ring which is introduced in [13, 14], at there, S is a subsemigroup of
End(G). Also, for any endomorphism a of G, the centralizer of «a in
G is C({a}; G) we denote it simply by C(a;G). Note that obviously,
C(; G) is a subnear-ring of M(G) and
C(S;G) = NaesC(o;G).
Also, we see that C(1g;G) = M(G) and C(0;G) = My(G).
In ring and module theory, we obtain the following important struc-

ture for near-ring and R-group theory:
Considering each element a € R is an endomorphism of V' and

Mg(V):={fe M(V)| af = fa, Va € R},
we see that
Mgr(V) = C(B; V)
is the centralizer near-ring of R and V. Also
Mr(V) = NaerM, (V).

ProrosITION 3.6. Let R be a semisimple ring with unity 1 and let
M be a right R-module. Then Mg(M) is a semisimple near-ring.

Proof. Consider R = S1® S, ® - d Sy, where each §; is a simple
ring. Let e; denote the unity of S;. If M; = {x € M| ze; = z}, then

M =MooM® - -&M,

and M; f C M, for each f € Mg(M). Moreover, if f; denotes the restric-
tion of f to M;, then the mapping

g : MR(M) —')Msl(Ml)@Msz(A‘{?)@"'GBMSl(Ml)

defined by 0(f) = (f1, fa,-- , fn) is a near-ring homomorphism. This
mapping is surjective, for if (fy, f2, -, fn) € Mg, (M1) & Mg,(M3) @
- @® Mg, (M,), then we can extend each f; to all of M defined by
(x1+zo+---+2,)fi = z;fi. Then f = Y f; is an element of Mg(M)
such that (f) = (f1,f2,---, fn). To show that 8 is injective, we note
that (x1 + a2+ -+ zp)fe; = (xie)f = z;f, 1 =1,2,--- ,n. This
implies (z1 + 22+ -+ xn)f = x1f1 +z2fo+ -+ + Zpfrn. Thus 6(f)
implies that f = 0. Hence € is an isomorphism and from the Theorem
1 of [13], each Mg, (M;) is a simple near-ring. O

Now we get a more general concept then centralization which is known
till now.
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PROPOSITION 3.7. Let R be a near-ring with unity 1 and G a unitary
R-group. Then for any nonempty subset S of Dr(G),

Ms(G) :={f € M(G)| af = fa, Va € S}
is a centralizer subnear-ring of M(G) and
Ms(G) = NaesM 1 (G).

Moreover obviously, we see that M;}(G) = M(G) and M (G) =
Mo(G).

In Proposition 3.7, Mg(QG) is called the centralizer near-ring of S and
G which is a generalization of centralizer near-rings in [13, 14, 15]. We
denote M(,}(G) by M,(G) for convenance. Then

MS(G) = NacsM, (G)

COROLLARY 3.8. [13,14,15] Let R be a ring with unity 1 and V
a unitary right R-module. Then Mg(V) := {f € M(V)| (za)f =
(zf)a, for all z € V, a € R} is a subnear-ring of M (V).

LEMMA 3.9. [18] Let G be a faithful R-group. Then we have the
following conditions:

(1) If (G, +) is abelian, then (R, +) is abelian;

(2) If G is distributive, then R is distributive.

Applying this Lemma, we get the following Proposition:

PROPOSITION 3.10. If G is a distributive abelian faithful R-group,
then R is a ring.

The following statement which is obtained from Lemma 3.9 and prop-
erty of faithful D.G. (R, S)-group is a generalization of the Proposition
3.10.

PROPOSITION 3.11. Let (R, S) bea D.G. near-ring. If G is an abelian
faithful D.G. (R, S)-group, then R is a ring.

Finally, we also introduce the M R-property of R-group, which is
motivated by the Lemma 3.5. An R-group G is called an M R group over
near-ring R, provided that every mapping on G is an R-homogeneous
map of G, that is,

M(G) = Mg(G).
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EXAMPLE 3.12. (1) If R = Z is the near-ring of integers, then every
regular R-group is an MR group.

(2) f R = Mg(G) is a centralizer near-ring, then R-group G is an
MR group.

We also apply Proposition 3.1 for GM-property for module to M R-
property for R-group. Thus we only introduce a characterization of MR
groups for direct sum without proof as following.

PROPOSITION 3.13. Let {G;|i € A} be any family of R-groups. Then
each G; is an M R group if and only if G := &G} is an M R group.

A similar property of Proposition 3.4 for M R group is obtained, using
the variables on the right side of maps on R-group as defined previously,
together with Proposition 3.10. Thus we have the following:

PROPOSITION 3.14. Let G be an R-group.

(1) IfG is a faithful MR group, then R is a commutative near-ring.
(2) If G is a faithful distributive abelian MR group, then R is a
commutative ring.

Proof. Let a, b € R. Define a mapping f : G — G given by
zf = wa, for all z € G. Then clearly, f € M(G). Since G is an MR
group, f € Mg(G). Thus we have the equalities: (zb)f = (xzb)a = z(ba)
and since f € M(G) = Mgr(G),

(xb)f = (zf)b= (za)b = z(ad).
Since G is a faithful R-group, these two equalities implies that ab = ba.
Hence R is a commutative near-ring. O
From the Propositions 3.9 and 3.14, we get the following statement.

COROLLARY 3.15. If G is an abelian faithful MR group over near-
ring R, then R becomes a commutative ring.

The following are another characterization of MR groups and GM
modules.

PROPOSITION 3.16. Let G be an R-group with the representation
0 : (R’ =+, ) B (M(G)7 +, )

Then RO C Center of M(G) if and only if G is an M R group.
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Proof. We will prove the only if part. Suppose that R§ C Center of
M(G). To show that M(G) = Mg(G), let f € M(G), and let z € G,
r € R. Then from the definitions of § and the Center of M(G), we have

(zr)f = (zr8)f = z(r@o f) = z(ford) = (zf)rd = (zf)r.

This implies that f € Mg(G), that is, M(G) C Mgr(G). Hence G is an
MR group. O

COROLLARY 3.17. Let M be a right R-module with the right regular
representation
g: (Rv+,) (EHd(M),—i—,)

Then O(R) C Center of End(M) if and only if M is a GM module.

ACKNOWLEDGMENT. This work was done while the author was visit-
ing the Center of Ring Theory and Its Applications of Ohio University,
Athens, OH. 45701. Also, the author is grateful for the kind hospitality
he enjoyed during his visit at his sabbatical year 2002.

References

[1] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Springer-
Verlag, New York, Heidelberg, Berlin, 1974.

[2] P. B. Bhattacharya, S. K. Jain, and S. R. Nagpaul, Basic Abstract Algebra,
Cambridge University Press, 1994.

[3] G. F. Birkenmeier and Y. U. Cho, Additive endomorphisms generated by ring
endomorphisms, East-West J. Math. 1 (1998), no. 1, 73-84.

[4] S. Dhompongsa and J. Sanwong, Rings in which additive mappings are multi-
plicative, Studia Sci. Math. Hungar. 22 (1987), 357-359.

[5] M. Dugas, J. Hausen, and J. A. Johnson, Rings whose additive endomorphisms
are multiplicative, Period. Math. Hungar. 23 (1991), 65-73.

[6] , Rings whose additive endomorphisms are ring endomorphisms, Bull.
Austral. Math. Soc. 45 (1992), 91-103.

[7] S. Feigelstock, Rings whose additive endomorphisms are multiplicative, Period.
Math. Hungar. 19 (1988), 257-260.

[8] Y. Hirano, On rings whose additive endomorphisms are multiplicative, Period.
Math. Hungar. 23 (1991), 87-89.

[9] A. V. Kelarev, On left self distributive rings, Acta Math. Hungar. 71 (1996),
121-122.

[10] K. H. Kim and F. W. Roush, Additive endomorphisms of rings, Period. Math.
Hungar. 12 (1981), 241-242.

[11] C. G. Lyons and J. D. P. Meldrum, Characterizing series for faithful D.G. near-
rings, Proc. Amer. Math. Soc. 72 (1978), 221-227.




R-homomorphisms and R-homogeneous maps 1167

[12] S. J. Mahmood and J. D. P. Meldrum, D.G. near-rings on the infinite dihe-
dral groups, Near-rings and Near-fields (1987), Elsevier Science Publishers B.V
(North-Holland), 151-166.

[13] C. J. Maxson and K. C. Smith, Simple near-ring centralizers of finite rings,
Proc. Amer. Math. Soc. 75 (1979), 8-12.

[14] , The centralizer of a group endomorphism, J. Algebra 57 (1979), 441

448.

[15] C. J. Maxson and A. B. Van der Merwe, Forcing linearity numbers for modules
over rings with nontrivial idempotents, J. Algebra 256 (2002), 66-84.

[16] J. D. P. Meldrum, Near-rings and their links with groups, Pitman, Boston,
London and Melbourne, 1985.

, Upper faithful D.G. near-rings, Proc. Edinb. Math. Soc. 26 (1983),
361-370.

[18] G. Pilz, Near-rings, North Holland, Amsterdam, New York and Oxford, 1983.

[19] R. P. Sullivan, Research problem, Period. Math. Hungar. 8 (1977), no. 23, 313-
314.

(17]

Department of Mathematical Education
College of Education

Silla University

Pusan 617-736, Korea

E-mail: yucho@silla.ac.kr



