References
- P. L. Chow and J. L. Menaldi, Boundary stabilization of a nonlinear string with nerodynamic force, Control of Partial Differential Equations, Lecture notes in pure and Appl. Math. 165 (1994), 63-79
- M. Ciarletta, A differential problem for heat equation with a boundary condition with memory, Appl. Math. Lett. 10 (1997), no. 1, 95-191
- M. Fabrizio and M. Morro, A boundary condition with memory in Electroma- gretism, Arch. Ration. Mech. Anal. 136 (1996), 359-381 https://doi.org/10.1007/BF02206624
- V. Komornik, Rapid boundary stabilization of the wave equation, SIAM J. Control Optim. 29 (1991), 197-208 https://doi.org/10.1137/0329011
- V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl. 69 (1990), 33-54
- I. Lasiecka, Global uniform decay rates for the solution to the wave equation with nonlinear boundary conditions, Appl. Anal. 47 (1992), 191-212 https://doi.org/10.1080/00036819208840140
- J. L. Lions, Quelques Methodes de resolution de problemes aux limites non lineaires, Dunod Gauthiers Villars, Paris, 1969
- M. Milla Miranda and L. A. Medeiros, On boundary value problem for wave equa- tions : Existence Uniqueness-Asymptotic behavior, Rev. Math. Apl. 17 (1996), 47-73
- J. E. Munoz Rivera and D. Andrade, Exponential decay of nonlinear wave equation with a viscoelastic boundary condition, Math. Methods Appl. Sci. 23 (2000), 41-61 https://doi.org/10.1002/(SICI)1099-1476(20000110)23:1<41::AID-MMA102>3.0.CO;2-B
- T. Qin, Breakdown of solutions to nonlinear wave equation with a viscoelastic boundary condition, Arab. J. Sci. Engng. 19 (1994), no. 2A, 195-201
- T. Qin, Global solvability of nonlinear wave equation with a viscoelastic boundary condition, Chin. Ann. Math. 14B (1993), no. 3, 335-346
- M. Tucsnak, Boundary stabilization for stretched string equation, Differential Integral Equation 6 (1993), no. 4, 925-935
- J. Vancostenoble and P. Martinez, Optimality of energy estimate for the wave equation with nonlinear boundary velocity feedbacks, SIAM J. Control Optim. 39 (2000), no. 3, 776-797 https://doi.org/10.1137/S0363012999354211
- E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Control Optim. 28 (1990), 466-477 https://doi.org/10.1137/0328025
Cited by
- On the exponential decay of the Euler–Bernoulli beam with boundary energy dissipation vol.389, pp.2, 2012, https://doi.org/10.1016/j.jmaa.2011.12.046
- Stability of an Axially Moving Viscoelastic Beam vol.23, pp.2, 2017, https://doi.org/10.1007/s10883-016-9317-8
- Uniform Decay for Solutions of an Axially Moving Viscoelastic Beam vol.75, pp.3, 2017, https://doi.org/10.1007/s00245-016-9334-8
- Uniform Stabilization of an Axially Moving Kirchhoff String by a Boundary Control of Memory Type vol.23, pp.2, 2017, https://doi.org/10.1007/s10883-016-9310-2
- Energy Decay for the Strongly Damped Nonlinear Beam Equation and Its Applications in Moving Boundary vol.109, pp.2, 2010, https://doi.org/10.1007/s10440-008-9330-3
- Stabilisation of a viscoelastic flexible marine riser under unknown spatiotemporally varying disturbance pp.1366-5820, 2018, https://doi.org/10.1080/00207179.2018.1518596
- Fixed point theorems for better admissible multimaps on abstract convex spaces vol.25, pp.1, 2010, https://doi.org/10.1007/s11766-010-2051-1