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ERROR ESTIMATES OF NONSTANDARD
FINITE DIFFERENCE SCHEMES FOR
GENERALIZED CAHN-HILLIARD AND

KURAMOTO-SIVASHINSKY EQUATIONS

SANG Mok CHOO*, SANG KwON CHUNG, AND YOON JU LEE

ABsTRACT. Nonstandard finite difference schemes are considered
for a generalization of the Cahn-Hilliard equation with Neumann
boundary conditions and the Kuramoto-Sivashinsky equation with
periodic boundary conditions, which are of the type
82 o
U + @g(u, Ug, Uzz) = aax—af(u, ug), @ =0,1,2.

Stability and error estimate of approximate solutions for the corre-
sponding schemes are obtained using the extended Lax-Richtmyer
equivalence theorem. Three examples are provided to apply the
nonstandard finite difference schemes.

1. Introduction

Consider the partial differential equation
2 5

0
(1.1) ug + wg(u,um,um) = %f(u,um), zeQ, 0<t<T,

with an initial condition

(1.2) u(z,0) = up(x), € Q,
and either Neumann boundary conditions
ou Bu
(13&) 5-1—‘ = 0, % = 0, (l',t) € Jf) x (O,T],
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or a periodic boundary condition
(1.3b) u(z,t) = u(z + 1,t), (z,t) € Q x(0,7T].

Here, a = 0,1,2,Q = (0,1) and f and g are given functions. We assume
that g(u, ug, uzz) = 91(u, Uy )uszy + g2(u, uz) and there exist constants
Go and G; such that 0 < Gy < g1(z,y) < G; for all real z and y. The
regularity of g and f is given in Theorems 3.3-3.4. In the case of using
the Neumann boundary conditions (1.3a), we also assume g;(x, —y) =
g1(z,y) and ga(x, —y) = ga2(x, y) for all z, y, in order to use an integration
by parts in the proof of Theorem 3.3.

In case of a = 2, the partial differential equation (1.1)—(1.2) can be
found as a generalization of the Cahn-Hilliard equation with g1 (u, uy;) =
q,92(u,uz) = 0, f(u, uz) = —pu + su® and the Neumann boundary con-
ditions (1.3a). Here, p,q and s are positive constants. Global existence
and uniqueness of the solution for the Cahn-Hilliard equation have been
shown by Elliott and Zheng[9]. Finite element Galerkin approximate
solutions have been obtained by Elliott and French[7]-[8]. Furihata[10]-
[11] has proposed a finite difference scheme which has inherited the de-
crease of the total energy. Choo and Chungf4] and Choo, Chung and
Kim[5] have considered a conservative nonlinear difference scheme and
obtained the corresponding error estimates.

In case of o = 0, the equations (1.1)—(1.2) with the periodic bound-
ary condition (1.3b) can be considered as the Kuramoto-Sivashinsky
equation with g1 (u,uz) = 1,92(u,uz) = —u, f(u,uy) = %ug Existence
and uniqueness of the solution for the Kuramoto-Sivashinsky equation
have been shown by Tadmor[16]. Finite difference schemes and finite
element Galerkin methods have been applied by Akrivis([2],[3]). For
the Kuramoto-Sivashinsky equation with Dirichlet boundary conditions,
Manickam, Moudgalya and Pani[13] have applied a second order split-
ting method with orthogonal cubic spline collocation methods.

In this paper, we consider error estimates of approximate solutions
for nonstandard finite difference methods. It is necessary to introduce
nonstandard finite difference schemes in order to preserve positivity and
energy decay of analytical solutions(see Mickens[14]). In Section 2, we
introduce the general nonstandard finite difference scheme for (1.1)—(1.2)
with either the boundary conditions (1.3a) or (1.3b). Some preliminary
lemmas and discrete norms are given. In Sections 3, we briefly recall
the Lax-Richtmyer equivalence theorem and obtain stability and error
estimates for the difference equation by following the idea in Lopez-
Marcos and Sanz-Serna[l2]. In Section 4, we give specific examples.
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2. Nonstandard finite difference scheme

Let h = A—l/f— be the uniform step size in the spatial direction for a
positive integer M and Qp, = {x; = ih|i = -2,-1,0,--- , M, M+1, M+
2}. Let k = % denote the uniform step size in the temporal direction
for a positive integer N. Denote V* = V(x;,t,) for t, = nk,n =
0,1,---,N. For a function V" = (V7, V" V- -- vvﬁ7VA7/lI+17V]\T/L[+2)
defined on €y, define the difference operators as for 0 S 1< M,

Vi, =V vir-vt
ViR = —’“h VoV = VY = (v+ +VoVn,
VAV =V (V_V") and VAV = v2(v2V;n).

Further, define operators V"+1/2 and 8,V", respectively, as

n Vn+1 vn V'n—l—l _yn
vt = B T and g =

Then the approximate solution U™ for (1.1)-(1.2) is defined as a solution
of

atU?+v2{g1 (Uf“/ 2 gyt 2) v2urY 2}
_ 2 n+1/2 Syrm+1/2
(2.1) = — Vg, (Ui VU )
+Vep (U{‘, Ut v_urtt? v oty 2)

with the initial condition

(2.2) U = uo(ws), 0<i< M

and the boundary conditions either

(2.3a) VU =0, VV2U! =0, i=0,M, 1<n<N
or

(2.3b) U =Uly, —00<i<oo, 0<n<N.

Here, V! = V and P may be any C**2(R%)-function satisfying
Py, VoY vty = Y2 w0 + 1)

79 g ) 1 ? T

with 1 < v and 1 < (. In the case of using the Neumann boundary
conditions (1.3a) and o = 2, P also must satisfy

(2.4) P(z,y,—z,—w) = P(z,y,w, 2), Ya,y, z,w

in order to use an integration by parts in the proof of Theorem 3.3.
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For simplicity, we denote P (Ui", urtt, V_Uinﬂ/z, V+U?+1/2) by
[PU ]nH/ 2, Note that the discretized Neumann boundary conditions
(2.3a) is equal to Uy = UT, Uppyy = Uy, UZy = U3 and Upypyy =

UM 2°
In order to consider the error estimates corresponding to the finite

difference equation (2.1) with the initial condition (2.2) and the bound-
ary condition (2.33) we now introduce the discrete L2-inner product

(V, W) —hz VW, = h{2(VOWO+VMWM)+ Z VW}
1=0 i=1

and the corresponding discrete L2-norm

1
Vle=(V,V)i
for functions V = (V_g,--- , Vagyo) and W = (W_g, - -+ , War4o) satisfy-
ing (2.3a). For the maximum norm, we define

Vo =Oglg>§lel

Hereafter, whenever there is no confusion, (-,-) and |- || will denote (-, ‘)
and || - ||n, respectively.

It follows from summation by parts that the following Lemma 2.1
holds.

LEMMA 2.1. For functions V and W defined on €Y}, and satisfying the
first equality in (2.3a), the following identity and inequalities hold.

1) (V2V,W) = = M (V_V))(V_W;) = (V, V2W).
@) VLV < 2VIIIvEV].
3) IV-V|? < 2|V|[V3V].

The following lemma can be verified by summation by parts and using
minimum eigenvalue of a symmetric matrix. For a proof, see Agarwalll].

LEMMA 2.2. Let M be any positive integer If Vi =0, then

{25111 2M+1)} ZV2<Z(V Vie1)?

LEMMA 2.3. For a function V defined on Yy, the inverse inequality
- 1
I9Vi< vl
holds.
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Proof. From the definition of the discrete norm, it holds that

IVV|? = hZ ( z+1 V 1) _4hz” (V2 +V2)

M-1 1
= [V{) + V& 42 Z vﬂ = ﬁnvni

Thus, we obtain the inverse 1nequahty. 0

Using Lemma 2.2 and the definition of V(V), we obtain the following
inequalities.

LEMMA 2.4. Let V be a function defined on Qj, and satisfying (2.3a).
Then
@) 19V < 22|72V,
@) VOV < 22|92V

It follows from Lemma 2.3 and Lemma 2.4 that the following lemma
holds.

LEMMA 2.5. Let V be a function defined on 0, and satisfying (2.3a).
Then
1) IVIZ, < 3IVIE +8[V][[IVV].
2) IVVIZ <5IVV|2 + V2V~
(3) IV2VI5, < 3+ DIIVVI~
Proof. Let 4 be an odd index such that
Vu2 =min{VZ,,| 0 <2¢+1 < M,/ is an integer}.
Then

M M
" "

=h§ j V3g3h§ CVE=3|VIR
=0 =0

For all positive integers j such that u + 2§ < M, we obtain
j—1
Vi —Vi= Z{%(i—%l)-{—u + Vairy HVa(ip 1y — Vainn}
i=0
j—1
=2h Z{V2(z’+1)+u + Vairu} VVaiti4p
i=0
<slIvVIHvvIL.
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This implies
Vi SVEHEIVIIVVI < 3IVI2 +8IVIIVVI.
Similarly, we obtain for all positive integers j such that pu — 25 > 0.

V2o < VZ48|VIIVV] < 3|V +8IVIIIVV]-

Letting v be an even index such that
V2 =min{V} | 0 < 2¢ < M, £ is an integer}
and following the above idea, we obtain ’
Vi S3BIVIP +8|VIIVV] and V2, < 3||V|* +8V([VV].

Thus, the first inequality (1) is proved.

The second inequality (2) follows from the inequality (1) and Lemma
2.4.

Since we obtain

8
IVI% < 3+ E)||V||2
from the inequality (1) and Lemma 2.3, the inequality (3) is proved. [

REMARK 2.1. For V and W defined on 2, and satisfying V; = Va4
and W; = Wy, with i = 0,1, we obtain

(V2V,W) = (V, V*W).

And for the periodic boundary condition (2.3b), we also obtain similar
results in Lemmas 2.1-2.5 which are sufficient for the proof of Theorem
3.3. For proofs, we refer to Ortega and Sanz-Serna[15].

3. Convergence of approximate solution

We recall the extension of Lax-Richtmyer equivalence theorem in
Lopez-Marcos and Sanz-Serna[l2] which makes us avoid the difficulty
of direct proof for convergence arising specially in nonlinear problems.
Let u be a solution of a problem ®(u) = 0 and uj be a discrete eval-
uation of u on Q. Let Uy be an approximate solution of u, which is
obtained by solving the discrete equation

(3.1) @, (Un) =0,

where ®, : X; — Y}, is a continuous mapping and X, Y}, are normed
spaces having the same dimension. The scheme (3.1) is said to be con-
vergent if (3.1) has a solution Uj, such that limp g |Up—up||x, = 0. The
discretization (3.1) is said to be consistent if limp_q || ®x(un)||y, = 0.
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The scheme (3.1) is said to be stable in the threshold Ry, if there exists
a positive constant C such that for an open ball B(up, Rp) C Xy,

Vi — Whllx, < CI®r(Va) — ®n(Wr)lly,, ¥ Vi, Wh € B(un, Rp)-

The following theorem is the extended Lax-Richtmyer equivalence
theorem which gives existence and convergence of approximate solutions.
For the proof, see [12].

THEOREM 3.1. Assume that the discrete equation (3.1) is consistent
and stable in the threshold Ry,. If ®; is continuous in B(up, Ry) and
|®n(ur)|ly, = o(Rr) as h — 0, then (3.1) has a unique solution Uy, in
B(up, Rp) and there exists a constant C such that

1Ur — unlix, < Cll®n(un)ly,-

According to Theorem 3.1, we have only to show that (2.1) is consis-
tent and stable in the threshold in order to show the unique existence
and convergence of approximate solutions.

Let Z}' be the set of all functions defined on €, satisfying the dis-
cretized Neumann boundary condition (2.3a) at time level n (0 < n <
N). We take Xp, = Y}, = ngo Zp and define a mapping ®5, : X, — Yp,
by ®,(U) = U, where for n =0,--- , N — 1,

O+t = 0,07 + V2 {gr (U7, GUp ) vRU

(3.2) 2 n+1/2 &y m+1/2 n+1/2
+ Vg (U2 U — v (P,
and
(3.3) U° = U° — .
We take norms | - [|x, and || - [ly, on X and Yj, respectively, such
that
N-1
2 _ 2 2r7n+1/2)(2
IO, = jmax U™+ & 2(:) Nadans
n=
and

N
IO, = 10°)7 + & 0™

The consistency of the scheme (2.1)—(2.2) is obtained using Taylor’s
Theorem and the Mean Value Theorem.
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THEOREM 3.2. Let u be the solution of (1.1)~(1.2) with bounded

. 3y 86 . . .
derivatives %?, g—;é and up, be the discretized evaluation of u. Assume

91,92 € C*(R?), f € C**2(R?) and P € C*+2(R*). Then there exists a
constant C such that for 1 < vy and 1 < ¢,

1®n(un) v, < Ok + ).

We now consider the stability of the approximate solution in the
threshold Ry,.

THEOREM 3.3. Let ®,(U) = U and ®,(V) = V. Assume that
Uge € L®(2x(0,T)), g1, g2, f € C1(R?), P € C*(R*) and Ry, = O(R"k®)
with r > % and s > % Then there exists a constant C such that for any
U and V in the ball B(up, Ry),

U - Vlx, < C[24(U) ~ 21(V)lly,.
_ Proof. Let e = U™ ~ V" and K" = U™ — V™. Replacing U" and
U™ in (3.2) by V™ and V", respectively, and subtracting this result from
(3.2), we obtain

(3.4)
Ol + V2 {91 (Uz_n+1/2’ ‘—7Uin+1/2) V26?+1/2}
- f(in+1
+ V? [{91 (V;n+1/2, vvin-l—l/2) —a (UZLH/?, @Uin+1/2)} vz‘/;n+1/2]
v {92 (Ui"+1/2’ @Uin+1/2) — g (Vin+1/2’ @Vinﬂ/z)}
+ Ve ([PU];‘“/? _ [pv]?ﬂ/?) _

It follows from Lemma 2.5, the definition of || - [|x, and Ry = O(h"k®)
with r > % and 5 > % that for V in the ball B(ux, Rp),

oy, < [ (e =i P) | s

1 h"kS
SC(1+M)]€_1/E+C

: 1
<C {1 + ks—1/2 (Z hr—f/Z) } )
£==0

(3.5)
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Using the Mean Value Theorem, Lemma 2.1 and (3.5), we obtain for
some 0 <& <land 0< & <1,

(w07 e g
<ol

<, {7 1)

x e"+1/2H ¥ H g1y (V72 VU + (1 - &)VHI2) Hoo

< [ereYwens]

< ¢|| w22 OO( ent12| 4 ?e”“/ZH)HVZe"Jfl/ZH

v+en+1/2H) Hv2en+l/21

< ¢||w2vrtise ( ent1/2|| v_en+1/2“Jr
o0

IA
Q

v2yntl/2 ( ent1/2|| 4 n+1/2I%Hv2€n+1/2“%>“v2en+1/2H

et I et W] ot B i |

<ofr g7 (S Yo e

Further, since [PV]"t1/2 = p(y» yntl v_yntl/2 v, yntl/2) it
follows from the Mean Value Theorem and Lemma 2.1 that for « = 0, 1,

(va{[PU]n+1/2 _ [Pv]n—i—l/?}, en+1/2)

(3:7) < C{ " en+1/2Hl/QHVQenJrl/z“l/Q}

and for a = 2,

n+1

+ |le +

en+1/2“

(3.8)
( {[PU]n+1/2 PV]n-l—l/Z} n+1/2)

C{ o+l n+1/2”1/2“V26n+1/2H1/2} Hv2en+1/2“'
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Taking an inner product between (3.4) and 2e"*1/2 and applying
Lemma 2.1, (3.6) and (3.7)—(3.8), we obtain

N W e e S

< uf{n+1”2 + uen+l/2“2

2 1 2t
+C {1 + Zk(s—l/Z)z1 (Z hr—€/2> } (”611”2 + ||en+1”2)

=0 £=0
Go Go
+ 7||V2e"+1/21|2 +C(lle™1? + lle™ %) + 3|IV26”+1/2I|2-
Thus, we have

8™ P + Gol| P2 1/2 2
(3.9)

2 1 .
< ”Kn+1”2 + C{l + Z k(s—1/2)2’(z hr—€/2)2')}(”en”2 + ”en+1”2).
=0 £=0

Applying the discrete Gronwall’s inequality to (3.9), we obtain for m >
0,
m m41 _
™12 + kS V222 < SO+ £ S 1R,
n=0 n=1
2 p(s—1/2)28 (31 pr—g/2y20
where & = exp ( O{Hzﬁgk (§:€=fh ) }Z T) _
1-kC {14+ T2 k(1722 (T )_  hr=t/2)7 }

Since
0=y — YO =070 = KO,
the desired result is obtained. 0O

Tt follows from Theorem 3.1 that for k = O(hf) with 0 < 7 <t<
L r>g,s>3,7>1and (>1,

(3.10)

0’3 24 ¢
i h(;;:)”Yh _ O(kh:;g:l ) = O(RET=9)=" 4 RS=T=25) . 0 as h — 0.

Hence, applying Theorems 3.2-3.3 and (3.10) to Theorem 3.1, we obtain
the following error estimate for (2.1)—(2.2).
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THEOREM 3.4. Suppose that hypotheses of Theorem 3.3 hold. Let
U be a solution of (2.1)~(2.3a). Then for k = O(h%)

< —C»;—T, r> % and s > %, there exists a constant C such that for 1 <~y
and 1 < ¢,

U —upx, <CKY+hS).

REMARK 3.1. Under the periodic boundary condition (2.3b), we may
show that Theorem 3.4 also holds.

REMARK 3.2. Consider the partial differential equation, for n > 0,
0? o
Ut — Mgzt + @g(uaux,um) = —(%—af(u,ux)

with an initial condition (1.2) and the boundary conditions either (1.3a)
or (1.3b). Let U™ be approximate solutions for

AT — qv2UT + VH{ gu(Uf Y, SUF A gt 2

+ VePUR, UMY VUV UM VLUR, VUMY,

where P may be any function satisfying P(u] uttl v_ u, V- un+1

177

V+u?,V+u?+1) = f(u?+1/2 n+1/2> +O(k"+h¢) with1 <yand 1 <¢

) ’L T
and when o = 2, P also must satlsfy

(3.11)

P(:E? Y, —21, —22, Wi, “’U)Q) = P(.’L’, Y, w1, we, 21, z2)7 Vl’, Y, 21, 22, W1, W2
in order to use an integration by parts in the proof of Theorem 3.3.
Then we may show that Theorem 3.4 holds.

REMARK 3.3. We may show that Theorem 3.4 also holds for some
nonlinear finite difference schemes such as P in (2.1) having additional

independent variables U 1, U |, U;” "H and Ul"jll.

4. Applications

In this section, we apply the nonstandard finite difference scheme to
two partial differential equations. And we define [Pu]nJr /2
P, ut YV _ul, V_ult Vol ,Vulth
= f 20T 4 Ok + RS)

with 1 <~y and 1 < (.

satisfying
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ExAMPLE 4.1. Consider the Cahn-Hilliard equation
# (4G
dz2 \ du
with the initial condition (1.2) and the boundary condition (1.3a). Here
% —pu + sud — qug, with positive constants p, ¢, and s.
Furihata[10] proposed a stable finite difference scheme for (4.1) as
follows.

(4.1) up = ),er,0<th,

5Gg\ /2
4.2 n=v2i 2
4 s =v (),
n+1/2 3
(4 3) ((;?]) +/ =—p :l+1/2 Zz Un+1 3—j U'n)] qv2Un+1/2
7=0

He showed that the scheme (4.2)—(4.3) inherits the conservation of mass
and the decrease of the total energy from the equation (4.1).

In order to apply the nonstandard finite difference scheme (2.1) to
(4.1)-(4.3), we rewrite (4.1)—(4.3) as

.{..22. -(?EE ——?—2—(— u 4 su®)
02 \9522 ) T o2V P

QU + VA (VAU = V2 PUTT2,

and

where
3
[PUTFHYE = —pU /2 4 23 (U (Upy.
=0
These are the forms of (1.1) and (2.1) with

[Pull P2 = —pu ™%+ s(ul )3 + O(k?)
and P satisfies (2.4).

ExAMPLE 4.2. Consider the viscous Cahn-Hilliard equation

82ut 62 6G
(44) WGy = g (m

with the initial condition (1.2) and the boundary condition (1.3a). Here

n is a positive constant and 3¢ = —pu + sud — 1g,(u)(us)? — ¢(u)uge

),xEQ,O<t§T,
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with 0 < Gy < ¢(x) < Gy for constants Gy and G;. Choo,Chung and
Lee[6] proposed a finite difference scheme for (4.4) as follows.

4.5 U — 2 g 2
(4.5) T — V20U v<5U

(4.6)

n+1/2 3
(ﬁ) i — —pUi”J“W ZZ Un+1 3—¢ Un
=0

35U ),
1 dg - e} nte)
NPT {Z (veur+) + (v-0r+)
’ =0
—q(U)T.‘+1/2V2U.”+1/2 {V q(U)n+1/2}v Un+1/2
1 2

1
_ = An+1/2 n+1/2
S Va2 Vot
where
dg _ [e8av [}; Wi for U; # Vi,
d(Us, Vi) (Ul), for U; = V.

They showed that the scheme (4.5)—(4.6) inherits the conservation of
mass, the decrease of the total energy and the convergence of approxi-
mate solutions of (4.1).

In order to apply the nonstandard finite difference scheme (2.1) to
(4.4)-(4.6), we rewrite (4.4)—(4.6) as

5?2 &%y 92 3 1 9
— NMUget + 75 92 {Q(U)W} ) {—Pu tsu” — 5%(’“)(“@) }
and
atUzn _ nvZatUln + vZ{q(U)?+1/2V2UZL+l/2} _ V2[PU]?+1/2,
where
[PUY?

3
= —pUt? 4 Z Sy T

=0
1 dg ! . .
S (S0 s )]
_ % V_q(U)?+1/2} v_UimL1/2 _ % {V+q(U)?H/2} V+Ui"+1/2.
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These are the forms in Remark 3.2 with
[Pu]f_l+1/2 = —pu W2 4 g ( n+1/2)
1

7 (u?+1/2) (UZ:UZ)Q +O(k? + )

21
2
and P satisfies (3.11).

ExaMPLE 4.3. Consider the Kuramoto-Sivashinsky equation

32
(4.7) ut—l—a2(uum+u)+uux=0,weR,0<t§T,

with the initial condition (1.2), the boundary condition (1.3b) and v > 0.
Akrivis[2] proposed a Crank-Nicolson-type finite difference scheme
for (4.7) as follows.

BUL + V2 (usz,.”* Y2 yntt 2)

+ % (Un+1/2 + Un+1/2 n Un+1/2) §7U;@+1/2 =0.

He derived the optimal-order error estimation of the approximation.

In order to apply the nonlinear finite difference scheme (2.1) to (4.7)—
(4.8), we rewrite (4.7)—(4.8) as

(4.8)

62
U + —= 57 (Vuze + u) = —uty
and
QUL + V2(wvrU Y2 + UMYy < [PUITTY?,
where

[PU]7.‘+1/2 — _ (Un+1/2 4 Un+1/2 4 Un+1/2)
7

These are the forms in Remark 3.3 with

1
5 (VU v, opt?)
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