References
- J. Adamek and H. Herrlich, Abstract and Concrete Categories, John Wiley & Sons, Inc., 1990
- L. P. Belluce, Semisimple algebras of infinite-valued logic and bold fuzzy set theory, Canad. J. Math. 38 (1986), 1356-1379 https://doi.org/10.4153/CJM-1986-069-0
-
L. P. Belluce,
$\alpha$ -complete MV-algebras, Non-classi. log and their appl. to fuzzy subsets, Linz. 1992, 7-21 - C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math Soc. 88 (1958), 467-490 https://doi.org/10.2307/1993227
- T. H. Choe, A dual adjointness on partially ordered topological spaces, J. Pure Appl. Algebra 68 (1990), 87-93 https://doi.org/10.1016/0022-4049(90)90135-5
- T. H. Choe, E. S. Kim, and Y. S. Park, Representations of semi-simple MV - algebra, Kyungpook Math. J. 45 (2005), to appear
- L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand Princeton, NJ., 1960
- S. S. Hong and L. D. Nel, Duality theorems for algebras in convenient categories, Math. Z. 166 (1979), 131-136 https://doi.org/10.1007/BF01214038
- A. Di Nola and S. Sessa, On MV -algebras of continuous functions, Kluw, Acad. Pub. D. 1995, 23-32
- C. S. Hoo, Topological MV -algebras, Topology Appl. 81 (1997), 103-121 https://doi.org/10.1016/S0166-8641(97)00027-8
- D. Mundici, Interpretation of AFC-algebras in Lukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63 https://doi.org/10.1016/0022-1236(86)90015-7
- H. E. Porst and M. B. Wischnewsky, Every topological category is convenient for Gelfand-Naimark duality, Manuscripta Math. 25 (1978), 169-204 https://doi.org/10.1007/BF01168608
Cited by
- An extension of Stone Duality to fuzzy topologies and MV-algebras vol.303, 2016, https://doi.org/10.1016/j.fss.2015.11.011