DOI QR코드

DOI QR Code

Kinetics of Athermal Martensitic Transformation in Yttria Doped Zirconia

  • Pee, Jae-Hwan (Icheon Institute, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Eui-Seok (Icheon Institute, Korea Institute of Ceramic Engineering and Technology) ;
  • Hayakawa, Motozo (Department of Mechanical Engineering, Tottori University)
  • Published : 2005.11.01

Abstract

The high temperature tetragonal phase of zirconia containing $1.40{\~}1.60\;mol\%$ of yttria can be fully retained at room temperature by rapid cooling. The metastable tetragonal phase transforms into the monoclinic phase athermally upon subzero cooling. The transformation exhibited an athermal burst transformation. The effects of yttria content and grain size on the athermal martensitic transformation were studied in detail. The burst temperature linearly decreased with increasing yttria content or decreasing grain size. To consider the distribution of martensite nuclei, the Weibull modulus of the athermal martensitic transformation was evaluated from the distribution of the burst transformation temperature. From the Weibull analysis, the distribution of embryos appears to be more homogeneous than that of the defects responsible for the fracture of similar material.

Keywords

References

  1. T. K. Gupta, R. C. Kuznicki, L. H. Cadoff, and B. R. Rossing, 'Stabilization of Tetragonal Phase in Polycrystalline Zirconia,' J. Mat. Sci., 12 [12] 2421-26 (1977) https://doi.org/10.1007/BF00553928
  2. T. K. Gupta, 'Sintering of Tetragonal Zirconia and Its Characteristics,' Science of Sintering, 10 [3] 205-16 (1978)
  3. R. Ramamoorthy, D. Sundararaman, and S. Ramasamy, 'X-Ray Diffraction Study of Phase Transformation in Hydrolyzed Zirconia Nanoparticles,' J. Eur. Ceram, Soc., 19 1827-39 (1999) https://doi.org/10.1016/S0955-2219(98)00287-8
  4. M. Hayakawa, K. Nishio, J. Hamakita, and T. Onda, 'Isothermal and Athermal Martensitic Transformations in a Zirconia-Yttria Alloy;' Mater. Sci. & Eng. Properties, Microstructure and Processing, 273/275 213-17 (1999) https://doi.org/10.1016/S0921-5093(99)00373-1
  5. M. Hayakawa, J. H. Pee, and Y. Fujiwara, 'Low Temperature Martensitic Transformation of Zirconia with Low Content of Yttria,' J. de Physique, Proceedings, 112 [11] 1103-06 (2003)
  6. C. A. Anderson and T. K. Gupta, 'Phase Stability and Transformation Toughnening in Zirconia,' Science and Technology of Zirconia, Cleveland, Ohio, June 16-18, A. H. Heuer and L. W. Hobbs Eds. (J. Am. Ceram. Soc., Columbus, Ohio, 1981) 184-201 (1980)
  7. N. Claussen, W. M. Kriven, M. Ruehle, and A. H. Heuer, 'Stability of Tetragonal $ZrO_2$ Particles in Ceramic Matrices;' J. Am. Ceram. Soc., 65 [12] 642-50 (1982) https://doi.org/10.1111/j.1151-2916.1982.tb09946.x
  8. A. D. Papargyris, 'Estimator Type and Population Size for Estimating the Weibull Modulus in Ceramics,' J. Eur. Ceram. Soc., 18 [5] 451-55 (1998) https://doi.org/10.1016/S0955-2219(97)00165-9
  9. I. W. Chen and Y. H. Chiao, 'Martensitic Nucleation in $ZrO_2$,' Acta Meter., 31 1627-38 (1983) https://doi.org/10.1016/0001-6160(83)90161-X
  10. M. Hayakawa, H. Shinmen, and M. Oka, 'Effect of Grain Size on the Martensitic Transformation in $CeO_2$-TZP,' ICOMAT-92, Monterey, California, July 20-24, C. M. Wayman and J. Perkins Eds. (Monterey Institute of Advanced Studies, Carmel, CA, 1993) 677-82 (1992)