DOI QR코드

DOI QR Code

Gene cloning, tissue distribution, and its characterization of Ca2+-activated Cl- channel activated by ginsenosides in Xenopus laevis oocytes

Xenopus laevis oocytes에서 진세노사이드에 의하여 활성화되는 Ca2+-activated Cl- 이온 통로의 유전자 클로닝, 조직 분포 및 채널 특성

  • Jeong, Sang-Min (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Lee, Jun-Ho (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Yoon, In-Soo (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Nah, Seung-Yeol (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University)
  • 정상민 (건국대학교 수의과대학 인삼학 및 생리학교실) ;
  • 이준호 (건국대학교 수의과대학 인삼학 및 생리학교실) ;
  • 윤인수 (건국대학교 수의과대학 인삼학 및 생리학교실) ;
  • 나승열 (건국대학교 수의과대학 인삼학 및 생리학교실)
  • Published : 2005.12.01

Abstract

The $Ca^{2+}-activated$ chloride channel (CLCA) was activated by ginseng total saponin (GTS) in Xenopus oocytes. The reverse transcription PCR (RT-PCR) method was performed with gene specific primers on oocytes. The gene specific primers were deduced from spleen cDNA in expressed sequence tags (EST) database showing high homology to the mouse CLCA. Full length of cDNA sequence was completed by linkage of several 5' and 3'-half cDNA fragments have been sequenced. We named the full cDNA to oCLCA transiently. The oCLCA gene encodes a protein of 911 amino acids with $48.9\%$ identity overall to that of mouse CLCA (mCLCA4). A predicted oCLCA amino acids sequence shows the molecular weight of 108 kDa and has four or more transmembrane domains, and also the one hydrophobic C­terminal domain. oCLCA gene was expressed ubiquitously in various tissues included oocytes, also interfered in oocytes by siRNA for oCLCA. Here, we suggest that oCLCA is a endogenous chloride channel gene in oocytes. We are studying for the identification of oCLCA gene and further physiological research.

Keywords

References

  1. Gray, M. A., Winpenny, J. P., Verdon, B., McAlroy, H. and Argent, B. E. : Chloride channels and cystic fibrosis of the pancreas. Biosci. Rep., 15, 531-541 (1995) https://doi.org/10.1007/BF01204355
  2. Collier, M. I., Levesque, P. C., Kenyon, J. L., and Hume, J. R. : Unitary $Cl^-$ channels activated by cytoplasmic $Ca {2+}$ in canine ventricular myocytes. Cir. Res., 78, 936-944 (1996) https://doi.org/10.1161/01.RES.78.5.936
  3. Yuan, X. J.: Role of calcium-activated chloride current in regulating pulmonary vasomotor tone. Am. J. Physiol., 272, L959-L968 (1997)
  4. Fine, B. P., Marques, E. S. and Hansen, K. A. : Calciumactivated sodium and chloride fluxes modulate platelet volume: role of $Ca{2+}$ stores. Am. J Physiol., 267, C1435-C1441 (1994)
  5. Barnes, S. and Deschenes, M. C. : Contribution of Ca and Ca-activated $Cl^-$ channnels to regenerative depolarization and membrane bistability of cone photoreceptors. J. Neurophysiol., 68, 748-755 (1992)
  6. Jaffe, L. A. and Cross, N. L. : Electrical regulation of sperm-egg fusion. Ann. Rev. Physiol., 48, 191-200 (1986) https://doi.org/10.1146/annurev.ph.48.030186.001203
  7. Cunningham, S. A., Awayda, M. S., Bubien, J. K, Ismailov, I. I., Arrate, M. P., Berdiev, D. J., and Fuller, C. M. : Cloning of an epithelial chloride channel from bovine trachea. J. Biol. Chem; 270, 31016-31026 (1995) https://doi.org/10.1074/jbc.270.52.31016
  8. Gruber, A. D., Elble, R. C., Ji, H. L., Schreur, K D., Fuller, C. M. and Pauli, B. D.: Genomic cloning, molecular characterization, and functional analysis of human CLCA1, the first human member of the family of $Ca{2+}$ -activated $Cl^-$ channel proteins. Genomics, 54, 200-214 (1998) https://doi.org/10.1006/geno.1998.5562
  9. Gruber, A. D., Schreur, K D., Ji, H. D., Fuller, C. M., and Pauli, B. D. : Molecular cloning and transmembrane structure of hCLCA2 from human lung, trachea, and mammary gland. Am. J. Physiol., 276, C1261-C1270 (1999)
  10. Pauli, B. D., Ghany-Abdel, M., Cheng, H. C., Gruber, A. D., Archibald, H. A. and Elble, R. C. : Molecular characteristics and functional diversity of CICa family members. Clio and Exp., Pharmacol and Physiol. 27, 901-905 (2000) https://doi.org/10.1046/j.1440-1681.2000.03358.x
  11. Dascal, N. : The use of Xenopus oocytes for the study of ion channels. CRC Crit Rev Biochem, 22, 317-387 (1987) https://doi.org/10.3109/10409238709086960
  12. Choi, S., Rho, S.H., Jung, S.Y., Kim, S.C, Park, C.S., Nah, S.Y.: A novel activation of $Ca{2+}$ -activated $Cl^-$ channel in Xenopus oocytes by ginseng saponins: evidence for the involvement of phospholipase C and intracellular $Ca{2+}$ mobilizaiton. Br. J. Pharmacol., 132, 641-648 (2001) https://doi.org/10.1038/sj.bjp.0703856
  13. Choi, S, Kim, H., J., Ko, Y. S., Jeong, S. W, Kim, Y. I., Simonds, W E, Oh,J. W., Nah, S. Y. : G$\alpha/$q11 coupled to mammalian phospholipase C $\beta$3-like enzyme mediates the ginsenoside effect on $Ca{2+}$ -activated $Cl^-$ current in the Xenopus oocyte. J. Biol. Chem., 276, 48797-48802 (2001) https://doi.org/10.1074/jbc.M104346200
  14. Choi, S., Lee, J. H., Kim, Y. I., Kang, M.J., Rhim, H., Lee, S. M. and Nah, S. Y. : Effects of ginsenoside on G proteincoupled inwardly rectifying $K^+$ channel activity expressed in Xenopus oocytes. Eur. J Pharmacol., 468, 83-92 (2003) https://doi.org/10.1016/S0014-2999(03)01666-2
  15. Hill, J. J. and Peralta, E. G. : Inhibition of a Gai-activated potassium channel (GIRK1/4) by the Gaq-coupled m1 muscarinic acetylcholine receptor. J. Biol. Chem., 276, 5505-5510 (2001) https://doi.org/10.1074/jbc.M008213200
  16. Sambrook, J., Fritsch, E. F., and Maniatis, T.: Molecular cloning: A Laboratory manual (2nd Edition), Cold Spring Harbor Laboratory Press (1989)
  17. Spector, D. L., Goldman, R. D., and Leinwand, L. A. : Cells: A laboratory manual, Cold Spring Harbor Laboratory Press (1998)
  18. Jeong, S. M., Lee, J. H., Kim, S., Rhim, H., Lee, B. H., Kim, J. H., Oh, J. W, Lee, S. M. and Nah, S. Y. : Ginseng saponins induce store-operated calcium entry in Xenopus oocytes., British J. of Pharmacol., 142, 585-593 (2004) https://doi.org/10.1038/sj.bjp.0705797