DOI QR코드

DOI QR Code

Al 분말의 수화 반응과 스파크 플라즈마 열처리법으로 제조된 알루미나 성형체 연구

Study of Hydrolysis of Al Powder and Compaction of Nano Alumina by Spark Plasma Sintering(SPS)

  • 엄영랑 (한국원자력 연구소, 원자력나노소재응용 Lab.) ;
  • 이민구 (한국원자력 연구소, 원자력나노소재응용 Lab.) ;
  • 이창규 (한국원자력 연구소, 원자력나노소재응용 Lab.)
  • Uhm Y. R. (Nuclear Naro Materials Development Lab. Korea Atomic Energy Research Institute(KAERI)) ;
  • Lee M. K. (Nuclear Naro Materials Development Lab. Korea Atomic Energy Research Institute(KAERI)) ;
  • Rhee C. K. (Nuclear Naro Materials Development Lab. Korea Atomic Energy Research Institute(KAERI))
  • 발행 : 2005.12.01

초록

The $Al_2O_3$ with various phases were prepared by simple ex-situ hydrolysis and spark plasma sintering (SPS) process of Al powder. The nano bayerite $(\beta-Al(OH)_3)$ phase was derived by hydrolysis of commercial powder of Al with micrometer size, whereas the bohemite (AlO(OH)) phase was obtained by hydrolysis of nano Al powder synthesized by pulsed wire evaporation (PWE) method. Compaction as well as dehydration of both nano bayerite and bohemite was carried out simultaneously by SPS method, which is used to fabricate dense powder compacts with a rapid heating rate of $100^{\circ}C$ per min. under the pressure of 50MPa. After compaction treatment in the temperature ranges from $100^{\circ}C\;to\; 1100^{\circ}C$, the bayerite and bohemite phases change into various alumina phases depending on the compaction temperatures. The bayerite shows phase transition of $Al(OH)_3{\to}{\eta}-Al_2O_3{\to}{\theta}-Al_2O_3{\to}\alpha-Al_2O_3$ sequences. On the other hand, the bohemite experiences the phase transition from AlO(OH) to ${\gamma}-Al_2O_3\;at\;350^{\circ}C.$ It shows AlO(OH) ${\gamma}-Al_2O_3{\to}{\delta}-Al_2O_3{\to}{\alpha}-Al_2O_3$ sequences. The ${\gamma}-Al_2O_3$ compacted at $550^{\circ}C$ shows a high surface area $(138m^2/g)$.

키워드

참고문헌

  1. L. O. Ohman and J. Paul: Mater. Chem. Phys., 73 (2002) 242 https://doi.org/10.1016/S0254-0584(01)00392-3
  2. H. X. Peng, Z. Fan, D.S. Mudher and J. R. G. Evans: Mat. Sci. Eng., A335 (2002) 207 https://doi.org/10.1016/S0921-5093(01)01930-X
  3. V. N. Kurlov, V. M. Kiiko, A. A. Kolchin and S. T. Mileiko: J. Cryst. Growth., 204 (1999) 499 https://doi.org/10.1016/S0022-0248(99)00213-4
  4. R. Greenwood, K. Kendall and O. Bellon: J. Eur. Ceram. Soc., 21 (2001) 507 https://doi.org/10.1016/S0955-2219(00)00234-X
  5. J. H. Park, M. K. Lee, C. K. Rhee and W. W. Kim: Mater. Sci. Eng. A., 325-377 (2004) 1263
  6. S. Mustofa, T. Araki, T. Furusawa, M. Nishida and T. Hino: Mater. Sci. Eng., B103 (2003) 128 https://doi.org/10.1016/S0921-5107(03)00160-0
  7. Y. R. Uhm, W. W. Kim, S. J. Kim, C. S. Kim, and C. K. Rhee: J Appl. Phys., 93, (2003) 7196 https://doi.org/10.1063/1.1558234
  8. A. R. Bunsell and M. H. Berger: J. Eur. Ceram. Soc., 20 (2000), 2249 https://doi.org/10.1016/S0955-2219(00)00090-X
  9. S. Ram and S. Rana: Mater. Lett., 42 (2000) 52 https://doi.org/10.1016/S0167-577X(99)00158-5
  10. M. L. P. Antunes, H. S. Santos and P. S. Santos: Mater. Chem. Phys., 76 (2002), 243 https://doi.org/10.1016/S0254-0584(01)00535-1
  11. N. Dilsiz and G. Akovali: Mater. Sci. Eng., A332 (2002) 91 https://doi.org/10.1016/S0921-5093(01)01726-9
  12. Y. R. Uhm, J. G. Lee, K. H. Jeong and C. S. Kim: Mater. Sci. Forum, 373-376 (2001) 165