DOI QR코드

DOI QR Code

Densification and Some Properties of Carbon Nanotubes-Dispersed Al2O3 Nanocomposite Powders

탄소나노튜브가 분산된 Al2O3 나노복합분말의 치밀화 및 특성

  • Yoo Seung-Hwa (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Yang Jae-Kyo (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Oh Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Technology) ;
  • Kang Kae-Myung (Department of Materials Science and Engineering, Seoul National University of Technology) ;
  • Kang Sung-Goon (Division of Materials Science and Engineering, Hanyang University) ;
  • Choa Yong-Ho (Division of Materials and Chemical Engineering, Hanyang University)
  • 유승화 (한양대학교 재료화학공학부) ;
  • 양재교 (한양대학교 재료화학공학부) ;
  • 오승탁 (서울산업대학교 신소재공학과) ;
  • 강계명 (서울산업대학교 신소재공학과) ;
  • 강성군 (한양대학교 신소재공학부) ;
  • 좌용호 (한양대학교 재료화학공학부)
  • Published : 2005.12.01

Abstract

In-situ processing route was adopted to disperse carbon nanotubes (CNTs) into $Al_2O_3$ powders homogeneously. The $Al_2O_3$ composite powders with homogeneous dispersion of CNTs could be synthesized by a catalytic route for in-situ formation of CNTs on nano-sized Fe dispersed $Al_2O_3$ powders. CNTs/Fe/$Al_2O_3$ nanopowders were densified by spark plasma sintering (SPS). The hardness and bending strength as well as electrical conductivity increased with increasing sintering temperature. However, the electrical conductivity of the composites sintered at above $1500^{\circ}C$ showed decreased value with increasing sintering temperature due to the oxidation of CNTs.

Keywords

References

  1. S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis and R. C. Haddon: Accounts of Chemical Research, 35 (2002) 12 https://doi.org/10.1021/ar0100374
  2. P. M. Ajayan and O. Z. Zhou: Carbon Nanotubes, 80 (2001) 391 https://doi.org/10.1007/3-540-39947-X_14
  3. M. Damnjanovic, I. Milosevic, T. Vukovic and R. Sredanovic: Physical Review B, 60 (1999) 2728 https://doi.org/10.1103/PhysRevB.60.2728
  4. S. J. Tans, A. R. M. Verschueren and C. Dekker: Nature, 393 (1998) 49 https://doi.org/10.1038/29954
  5. Z. Yao, H. W. Ch. Postma, L. Balents and C. Dekker: Nature, 402 (1999) 73 https://doi.org/10.1038/35011567
  6. A. Peigney, C. Laurent, F. Dobigeon and A. Rousset: J. Mater. Res., 12 (1997) 613 https://doi.org/10.1557/JMR.1997.0092
  7. E. Flahaut, A. Peigney, C. Laurent, C. Marliere, F. Chastel and A. Rousset: Acta Mater., 48 (2000) 3803 https://doi.org/10.1016/S1359-6454(00)00147-6
  8. A. Peigney, E. Flahaut, C. Laurent, F. Chastel and A. Rousset: Chem. Phys. Lett., 352 (2002) 20 https://doi.org/10.1016/S0009-2614(01)01441-5
  9. G. D Zhan, J. D. Kuntz, J. L. Wan and A. K. Mukherjee: Nature Mater., 2 (2003) 38 https://doi.org/10.1038/nmat793
  10. Y. H. Choa, J. K. Yang, B. H. Kim, Y. K. Jeong, J. S. Lee, T. Nakayama, T. Sekino, K. Niihara: J. Magnetism and Magnetic Materials, 266 (2003) 12 https://doi.org/10.1016/S0304-8853(03)00450-5
  11. Y. H. Choa, S. H. Yoo, J. K. Yang, S. T. Oh and S. G. Kang: J. of Korean Powder Metall. Inst., 12 (2005) 146 https://doi.org/10.4150/KPMI.2005.12.2.146
  12. Q. Jiang, M. Z. Qu, G. M. Zhou, B. L. Zhang and Z. L. Yu: Materials Letters, 57 (2002) 988 https://doi.org/10.1016/S0167-577X(02)00911-4
  13. A. Cao, C. Xu, J. Liang, D. Wu and B. Wei: Chemical Physics Letters, 344 (2001) 13 https://doi.org/10.1016/S0009-2614(01)00671-6
  14. W. Qian, T. Liu, F. Wei and H. Yuan: Carbon, 41 (2003) 1851 https://doi.org/10.1016/S0008-6223(03)00106-4
  15. C. S. Smith: Transactions of the Metalurgical Society AIME, 175 (1948) 15
  16. S. Rul, F. Lefevre-schlick, E. Capria, Ch. Laurent, A. Peigney: Acta Mater., 52 (2004) 1061 https://doi.org/10.1016/j.actamat.2003.10.038