DOI QR코드

DOI QR Code

A Spatial-domain Fourier Transform Infrared Spectrometer: Application for Analyte Measurement in Cell Culture Media

  • 투고 : 2005.09.22
  • 발행 : 2005.12.01

초록

A spatial-domain Fourier Transform (FT) infrared (IR) spectrometer coupled with a PtSi Schottky­barrier IR detector plane was developed in the spectral range of $2.0-2.5{\mu}m$ for noninvasive measurement of analyte concentrations in cell culture media during cell culture processing. A key optical component of the spectrometer is a Savart plate which is a birefringent polarizer generating coherent two rays for interfering. The spectral resolution of the spectrometer was determined as $71cm^{-1}$ (${\~}0.05{\mu}m$ at $2.5{\mu}m$). Clear IR fringe patterns were imaged on the IR detector plane. The feasibility of the spectrometer for our application was investigated by measuring absorbance spectra of glucose and fetal bovine serum (FBS) which are important compounds in cell culture media. Experiment results show that the spectral quality of glucose and FBS was comparable with the standard spectra acquired with a commercial FT-IR spectrometer, presenting the feasibility of the spectrometer to perform analyte measurement in cell culture media.

키워드

참고문헌

  1. B. Jung, S. Lee, I. Yang, T. Good, and G. Cote', 'Automated on-line noninvasive optical glucose monitoring in a cell culture system,' Appl. Spectrosc., vol 56, pp. 51-57, 2002 https://doi.org/10.1366/0003702021954421
  2. V. Saptari, 'Fourier-Transform spectroscopy Instrumentation Engineering,' A.R. Weeks de., (SPIE Press, Washington, 2003) pp. 4-9
  3. M. Hashimoto and H. Hamaguchi, 'Construction of a multichannel Fourier Transform Infrared spectrometer for single-event time-resolved spectroscopy,' Appl. Spectrosc., vol. 50, pp. 1030-1033, 1996 https://doi.org/10.1366/0003702963905376
  4. T. Okamoto, S. Kawata, and S. Minami, 'Optical method for resolution enhancement in photodiode array Fourier Transform spectroscopy,' Appl. Opt., vol. 24, pp. 4221-4225, 1985 https://doi.org/10.1364/AO.24.004221
  5. J. Zhao and R. L. Mccreery, 'Multichannel Fourier Transform Raman spectroscopy: combining the advantages of CCDs with interferometry,' Appl. Spectrosc., vol. 50, pp. 1209-1214, 1996 https://doi.org/10.1366/0003702963905060
  6. M. P. Dierking and M. A. Karim, 'Solid-block stationary Fourier-Transform spectrometer,' Appl. Opt., vol. 35, pp. 84-89, 1996 https://doi.org/10.1364/AO.35.000084
  7. S. Minami, 'Fourier Transform spectroscopy using image sensors,' Mikrochimica Acta, vol. 3, pp. 309-324, 1987 https://doi.org/10.1007/BF01201697
  8. J. V. WeedIer and M. B. Denton, 'Spatially encoded Fourier Transform spectroscopy in the ultraviolet to Near-Infrared,' Appl. Spectrosc, vol. 43, pp. 1378-1384, 1989 https://doi.org/10.1366/0003702894204506
  9. H. Aryamanya-Mugisha and R. R. Williams, 'A Fourier Transform diode array spectrometer for the UV, visible, and Near-IR,' Appl. Spectrosc, vol. 39, pp. 693-696, 1985 https://doi.org/10.1366/0003702854250301
  10. M. L. Junttila, J. Kauppinen, and E. Ikonen, 'Performance limits of stationary Fourier spectrometers,' J. Opt. Soc. Am., vol. 8, pp. 1457-1462, 1991 https://doi.org/10.1364/JOSAA.8.001457
  11. N. Ebizuka, M Wakaki, Y Kobayashi, and S. Sato, 'Development of a multichannel Fourier spectrometer,' Appl. Opt., vol. 34, pp. 7899-7906, 1995 https://doi.org/10.1364/AO.34.007899
  12. M. Hashimoto and S. Kawata, 'Multichannel Fourier Transform infrared spectrometer,' Appl. Opt., vol. 31, pp. 6096-6101, 1992 https://doi.org/10.1364/AO.31.006096
  13. M. J. Padgett and A. R. Harvey, 'A static Fourier Transform spectrometer based on Wollaston prisms,' Rev. Sci. Instrum., vol. 66, pp. 2807-2811, 1995 https://doi.org/10.1063/1.1145559
  14. J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett, and M. J. Padgett, 'Design of a static Fourier-transform spectrometer with increased field of view,' Appl. Opt., vol. 35, pp. 6698-6702, 1996 https://doi.org/10.1364/AO.35.006698
  15. X. Q. Jiang, J. Kemp, Y. N. Nign, A. W. Palmer, and K. T. V. Grattan, 'High-accuracy wavelength-change measurement system based on a Wollaston interferometer incorporating a self-referencing scheme,' Appl. Opt., vol. 36, pp. 4907-4912, 1997 https://doi.org/10.1364/AO.36.004907
  16. B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J.Padgett, 'An ultra-compact static Fourier-Transform spectrometer based on a single birefringent component,' Opt. Commun., vol. 130, pp. 1-6, 1996 https://doi.org/10.1016/0030-4018(96)00179-4
  17. J. Courtial, B. A. Patterson, W. Hirst, A. R. Harvey, A. J. Duncan, W. Sibbett, and M. J. Padgett, 'Static Fourier-Transform ultraviolet spectrometer for gas detection,' Appl. Opt., vol. 36, pp. 2813-2817, 1997 https://doi.org/10.1364/AO.36.002813
  18. M. J. Padgett, A. R. Harvey, A. J. Duncan, and W. Sibbett, 'Single-pulse, Fourier-Transform spectrometer having no moving parts,' Appl. Opt., vol. 33, pp. 6035-6040, 1994 https://doi.org/10.1364/AO.33.006035
  19. T. H. Barnes, 'Photodicde array Fourier Transform spectrometer with improved dynamic range,' Appl. Opt., vol. 24, pp. 3702-3706, 1985 https://doi.org/10.1364/AO.24.003702
  20. T. Okamoto, S. Kawata, and S. Minami, 'Photodiode array Fourier Transform spectrometer based on a birefringent interferometer,' Appl. Specirosc, vol. 40, pp. 691-695, 1986 https://doi.org/10.1366/0003702864508494
  21. W. Baird and N. S. Nogar, 'Compact, self-contained optical spectrometer', Appl. Spectrosc., vol. 49, pp. 1699-1740, 1995 https://doi.org/10.1366/0003702953965812
  22. S. Takahashi, J. S. Ahn, S. Asaka, and T. Kitagawa, 'Multichannel Fourier Transform spectroscopy using two-dimensional detection of the interferogram and its application to Raman spectroscopy,' Appl. Spectrosc., vol. 47, pp. 863-868, 1993 https://doi.org/10.1366/0003702934415309
  23. M. L. Junttila, 'Stationary Fourier-Transform spectrometer,' Appl. Opt., vol. 31, pp. 4106-4112, 1992 https://doi.org/10.1364/AO.31.004106
  24. T. H. Barnes, T. Eiju, and K. Matsuda, 'Heterodyned photodiode array Fourier Transform spectrometer,' Appl. Opt., vol. 25, pp. 1864-1866, 1986 https://doi.org/10.1364/AO.25.001864
  25. D. A. Skoog, F. J. Holler, and T. A. Nieman, 'Principles of Instrumental Analysis,' (Thomson Learning, Stamford, 1998) pp. 189-140
  26. M. Francon and S. Mallick, 'Polarization Interferometers: Application in Microscopy and Macroscopy,' (John Wiley & Sons, New York, 1971) pp. 19-25
  27. B. Jung, 'Effects of temperature on Near-Infrared spectroscopic measurement of glucose,' (Texas A&M University, College Station, 1998) pp 10-11
  28. S. Kawata, K. Minami, and S. Minami, 'Superresolution of Fourier Transform spectroscopy data by the maximum entropy method,' Appl. Opt., vol. 22, pp. 3593-3598, 1983 https://doi.org/10.1364/AO.22.003593
  29. K. Minami, S. Kawata, and S. Minami, 'Supperresolution of Fourier Transform spectra by autoregressive model fitting with singular value decomposition,' Appl. Opt., vol. 24, pp. 162-167, 1985 https://doi.org/10.1364/AO.24.000162