DOI QR코드

DOI QR Code

미시영역에서 중간역역까지 적용 가능한 범용 분자 시뮬레이션 시스템의 개발

Development of a general purpose molecular simulation system from microscopic to mesoscopic scales

  • 오광진 (한국과학기술정보연구원 슈퍼컴퓨팅센터)
  • 발행 : 2005.12.01

초록

본 논문에서는 개발된 범용 분자 시뮬레이션 시스템에 대해 기술하고자 한다. 본 연구에서 개발된 분자 시뮬레이션 시스템의 가장 큰 장점은 다른 무엇보다도 Langevin dynamics simulation이나 dissipative particle dynamics simulation 기법을 도입하여 all-atom 모델뿐만 아니라coarse-grain 모델까지도 다룰 수 있도록 설계하였고 따라서 미시영역은 물론 중간영역에서 일어나는 현상까지도 시뮬레이션 할 수 있도록 설계하였다는 점이다. 이를 통해 하나의 통합된 분자 시뮬레이션 시스템으로 생체막 내에서 마취제의 분포, 단백질 접힘 현상, 마이크로 채널 내에서 생체고분자의 구조와 유동 특성 등과 같이 미시영역에서부터 중간영역에 이르는 다양한 현상을 연구할 수 있게 되었다 개발된 시스템을 이용하면 molecular dynamics simulation에 기반한 분자 시뮬레이션 시스템으로는 불가능한 여러 중요한 바이오/나노 시스템을 시뮬레이션 할 수 있을 것으로 기대한다 마지막으로 벤치마크 결과를 통해 개발된 분자 시뮬레이션 시스템의 성능을 측정하였고 성능 최적화를 위한 병목지점을 조사하였다.

In this paper, a general purpose molecular simulation system which has been developed by the author, are described. One of the most advantageous features is that the molecular simulation system can handle a coarse-grained model as well as an all-atom mode. Therefore, we can simulate mesoscopic phenomena as well as microscopic phenomena with the help of Langevin dynamics simulation and dissipative particle dynamics simulation techniques. Thus we could study anesthesia, protein folding, biopolymer flow in microchannel with single framework, which spans from microscopic to mesoscopic scales. We expect that we can also simulate many other bio/nano systems of technological importance which are not feasible by means of molecular dynamics simulation technique. Finally, performance data are shown and a bottleneck is identified for future optimization.

키워드

참고문헌

  1. M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Clarendon, Oxford (1987)
  2. P.J, Hoogerbrugge and J.M.V.A. Koelman, 'Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics', Europhysics. Lett. 19, 155-160 (1992) https://doi.org/10.1209/0295-5075/19/3/001
  3. CHARMM (http://www.charmm.org)
  4. The Amber Molecular Dynamics Package (http://amber.scripps.edu)
  5. NAMD-Scalable Molecular Dynamics (http://www.ks.uiuc.edu/Research/namd/)
  6. A. T. Hagler, E. Huler, and S. Lifson, 'Energy Functions for Peptides and Proteins: I. Derivation of a Consistent Force Field Including the Hydrogen Bond from Amide Crystals', J. Am. Chem. Soc. 96, 5319-5327 (1974) https://doi.org/10.1021/ja00824a004
  7. A. T. Hagler and S. Lifson, 'Energy Functions for Peptides and Proteins: II. The Amide Hydrogen Bond and Calculation of Amide Crystal Properties', J. Am. Chem. Soc. 96, 5327-5335 (1977) https://doi.org/10.1021/ja00824a005
  8. N. Karasawa and W. A. Goddard, 'Acceleration of convergence for lattice sums', J. Phys. Chem. 93, 7320-7327 (1989) https://doi.org/10.1021/j100358a012
  9. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen, 'A smoothe particle mesh Ewald method', J. Chem. Phys, 103, 8577-8593 (1995) https://doi.org/10.1063/1.470117
  10. L. Verlet, 'Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules', Phys. Rev. 159, 98-103 (1967) https://doi.org/10.1103/PhysRev.159.98
  11. R. W. Hockney and J.W. Eastwood, Computer simulations using particles, McGraw-Hill, New York (1981)
  12. D. J Auerbach, W. Paul, C. Lutz, A. F. Bakker, W. E. Rudge, and F. F. Abraham, 'A special purpose parallel computer for molecular dynamics; motivation, design, implementation, and application', J. Phys. Chem. 91, 4881-4890 (1987) https://doi.org/10.1021/j100303a004
  13. K. Tu, M. Tarek, M. L. Klein, and D. Scharf, 'Effects of Anesthetics on the Structure of a Phospholipid Bilayer: Molecular Dynamics Investigation of Halothane in the Hydrated Liquid Crystal Phase of Dipalmitoylphosphatidylcholine', Biophys, J. 75, 2123-2134 (1998) https://doi.org/10.1016/S0006-3495(98)77655-6
  14. M. Parrinello and A. Rahman, 'Crystal structure and pair potentials: A molecular-dynamics study', Phys, Rev. Lett. 45, 1196-1199 (1980) https://doi.org/10.1103/PhysRevLett.45.1196
  15. M. Parrinello and A. Rahman, 'Polymorphic transitions in single crystals: A new molecular dynamics method', J. Appl. Phys, 52, 7182-7190 (1981) https://doi.org/10.1063/1.328693
  16. M. E. Tuckerman and G. J. Martyna, 'Understanding modem molecular dynamics: Techniques and application', J. Phys, Chem B, 104, 159-178 (2000) https://doi.org/10.1021/jp992433y
  17. Glen J. Martyna, Mark E. Tuckerman, Douglas J. Tobias, and Michael L. Klein, 'Explicit reversible integrators for extended systems dynamics', Mol. Phys. 87, 1117-1157 (1996) https://doi.org/10.1080/00268979650027054
  18. Massimo Marchi and Fiero Procacci, 'Coordinates scaling and multiple time step algoritms for simulation of solvated proteins in the NPT ensemble', J. Chem. Phys. 109, 5194-5202 (1998) https://doi.org/10.1063/1.477136
  19. K. J. Oh and M. L. Klein, 'A parallel molecular dynamics simulation for a molecular system with bond constraints in NPT ensemble', accepted for publication in Compo Phys. Comm https://doi.org/10.1016/j.cpc.2005.10.011
  20. J.-P. Ryckaert, G. Ciccotti, and H.J.C. Berendsen, 'Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes'. J, Comp Chem. 23, 327-341 (1977)
  21. H.C. Andersen, 'RATILE: A velocity version of the SHAKE algorithm for molecular dynamics calculations', J. Comp Phys., 52, 24-34 (1983) https://doi.org/10.1016/0021-9991(83)90014-1
  22. D. Brown, J,H.R. Clarke, M. Okuda, and T. Yamazaki, 'A domain decomposition parallel processing algorithm for molecular dynamics simulations of polymers', Comp. Phys. Commun. 83, 1-13 (1994) https://doi.org/10.1016/0010-4655(94)90030-2
  23. D. Brown, H. Minoux, B. Maigret, 'A domain decomposition parallel processing algorithm for molecular dynamics simulations of systems of arbitrary connectivity', Comp. Phys, Commun. 103, 170-186 (1997) https://doi.org/10.1016/S0010-4655(97)00040-4
  24. MacKerell et. al., 'All-atom empirical potential for molecular modeling and dynamics studies of protein', J, Phys. Chem. B, 102, 3586-3616 (1998) https://doi.org/10.1021/jp973084f
  25. W.L. Jorgensen, J, Chandrasekhar: J,D. Madura, R.W. Impey, M.L. Klein, 'Comparison of simple potential functions for simulating liquid water', J. Chem. Phys. 79, 926-935 (1983) https://doi.org/10.1063/1.445869
  26. FFTW Home Page (http://www.fftw.org)
  27. Korea@Home(http://www.koreaathome.org/)