DOI QR코드

DOI QR Code

The Abstraction Retrieval System of Cultural Videos using Scene Change Detection

장면전환검출을 이용한 교양비디오 개요 검색 시스템

  • 강오형 (군산대학교 정보전산원) ;
  • 이지현 (군산대학교 컴퓨터정보과학과) ;
  • 이양원 (군산대학교 컴퓨터정보과학과)
  • Published : 2005.12.01

Abstract

This paper proposes a video model for the implementation of the cultural video database system. We have utilized an efficient scene change detection method that segments cultural video into semantic units for efficient indexing and retrieval of video. Since video has a large volume and needs to be played for a longer time, it implies difficulty of viewing the entire video. To solve this Problem. the cultural video abstraction was made to save the time and widen the choices of video the video abstract is the summarization of scenes, which includes important events produced by setting up the abstraction rule.

본 논문에서는 교양 비디오 데이터베이스 시스템을 구축하기 위한 비디오 모델을 제안한다. 먼저, 교양 비디오의 효율적인 색인화와 검색을 위하여 교양 비디오를 의미 있는 단위로 분할하는 효율적인 장면 전환 검출 기법을 사용하였다 비디오가 대용량이며 장시간의 재생이 필요하다는 특징 때문에 전체 비디오를 시청해야하는 문제점이 있다. 이 문제점을 해결하기 위해 교양 비디오의 개요를 추출하여 시청자들에게 시간을 절약할 수 있고, 비디오 선택의 폭을 넓히도록 하였다. 비디오 개요는 개요 생성 규칙을 설정하여 중요 이벤트가 발생한 장면들을 요약한 형태이다.

Keywords

References

  1. A. K. Elmagarrnid et al., 'Video Database Systems : Issues, Products, and Applications,' Kluwer Academic Pub., 1997
  2. J. Oh and K. A. Hua and N.Liang, 'A Content-Based Scene Change Detection and Classification Technique Using Background Tracking,' In SPIE Conf. on Multimedia Computing and Networking, San Jose, CA, January, 2000
  3. Y. Rui, S. Huang and S. Mehrotra, 'Constructing Table-of Content for Videos,' ACM Springer-Verlag Multimedia Systems, 7(5), 1999 https://doi.org/10.1007/s005300050138
  4. Y. Day, S. Dagtag, M. Iino, A. Khoaklhar and A. Ghafoor, 'A Multi-Level Abstraction and Modeling in Video Databases,' ACM Springer-Verlag Multimedia Systems, 7(6), 1999 https://doi.org/10.1007/s005300050142
  5. H. Ueda, T. Miyatake, and S. Yoshizawa, 'IMPACT: An Interactive Natural-motion-picture Dedicated Multimedia Authoring System,' in proceedings of CHI, 1991 ACM, pp. 343-350, New York, 1991
  6. Nagasaka, A. and Tanaka, Y, 'Automatic Video Indexing and Full-Video Search for Object Appearances,' in Visual Database Systems II, Knuth, E., Wegner, L., Editors, Elsevier Science Publishers, pp.113-127, 1992
  7. Swanberg, D., Shu C. F., and Jain, R, 'Knowledge Guided Parsing and Retrieval in Video Databases,' in Storage and Retrieval for Image and Video Databases, Proc. SPIE 1908, pp.173-187, February, 1993
  8. X. D. Zhang, T. Y Liu, K. T. La, J. Feng, 'Dynamic selection and effective compression of key frames for video abstraction,' Pattern Recognition Letters 24, pp.1523- 1532, 2003 https://doi.org/10.1016/S0167-8655(02)00391-4
  9. Monerva M, Yeung and Boon-Lock Yeo, 'Segmentation of Video by Clustering and Graph Analysis', Computer Vision and Image Understanding, Vol. 71, No. 1, pp. 94-109, 1998 https://doi.org/10.1006/cviu.1997.0628
  10. A. Hanjalic and H. Zhang, 'An Integrated Scheme for Automated Video Abstraction Based on Unsupervised Cluster-Validity Analysis,' IEEE Trans. Cir. & Sys. for Video Tech., Vol.9, No.8, pp.1280-1289, Dec., 1999 https://doi.org/10.1109/76.809162
  11. S. Uchihashi, J. Foote, A. Girgenshon and J. Boreczky, 'Video Manga: Generating Semantically Meaningful Video Summaries,' Proc. ACM MM'99, 1999
  12. N. Babaguchi, 'Towards Abstracting Sports Video by Highlights,' Proc. ICME'00, Aug., 2000 https://doi.org/10.1109/ICME.2000.871056