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Abstract

When merging various datasets the perennial problem of relative weighting arises. In case of two datasets
an iterative algorithm has been developed recently that allows the rigorous determination of optimal variance
components of type repro-BIQUUE even for large amounts of data, along with the estimation of the joint
parameters. Here we shall present this new algorithm, and show its versatility in an example that will entail
the merging of two regional geoid estimates (derived from EGM 96 and CHAMP) in terms of certain series
expansions which have been proven previously to belong to the most efficient ones (e.g., wavelets, Hardy’s
multi-quadrics, etc.). Future attempts will be devoted to the sequential merging of altimeter and tide gauge

data.
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1. Introduction

In geodetic science, it is a very common task to
find a combined solution for something that had been
measured twice (or even more frequently) by different
methods, exhibiting their very own observational error
characteristics. Consequently, the respective variance
components for each dataset, not to mention the
covariance component in case of stochastically dependent
data, ought to be determined along with the parameter
estimation. For this purpose, Schaffrin (1983) had
proposed the non-iterative repro-BIQUUE principle that
leads to nonlinear normal equations for the estimated
variance components and, as a result, to nonlinear
estimators of the parameters; these, however, may still
turn out to be unbiased for symmetrically distributed
observational errors.

Related to the repro-BIQUUE approach, we face
essentially two problems that must be solved before
an efficient algorithm can be created:

(i) For the set-up of the nonlinear normal equations
from which the estimated variance components are to

be derived, numerous fraces need to be calculated of
matrices with total-data size, (e.g., three traces for two
components, six traces for three components, etc);
and:

(i1) A more suitable iteration scheme than the
“iterated MINQUE” ~ which latter does indeed provide
the repro-BIQUUE in case of convergence, according
to Schaffrin (1983), - must be formed in order to
widen the “convergence interval” for the initial values
and reduce the number of iterations while reducing
the costs per iteration step.

In order to circumvent the first problem (i), we
succeeded in rephrasing the normal equations for the
estimated variance components equivalently in such a
way that, in the case of two components, only one
trace must be calculated of a matrix the size of the
parameters. Moreover, if applied sequentially, for each
additional dataset and its component one more trace
of a matrix with parameter size needs to be evaluated,
- if necessary by one of the randomized methods as
proposed by Hutchinson (1990), or Koch and Kusche
(2002).
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To solve the second problem (ii), we developed a
number of new algorithms for the “rephrased normal
equations”, but will concentrate here on just one of
them that appeared to be the most pfomising to us at
this stage where we try to merge CHAMP data with
the well established EGM 96 gravity potential field
and to determine an “optimal geoid” from both sources.

Obviously, at a later stage, comparisons ought to be
done with other existing algorithms, including those
by Crocetto et al. (2000) and by Kusche (2003), with
emphasis on the dependence of the variance ratio on
the chosen resolution. But this is beyond the scope of
the present contribution.

2. A Review of the repro-BIQUUE Equa-
tions

Let us assume that two datasets have been collected
independently to explain a joint set of unknown
parameters. Then, a suitable model may read:

y:[yl:|= o §+l:e1:|=A§+e,
Y2 A, )

Ibz)(m M
e:(0,Z=07V,+a}V,), M

with tk A = m < n:= n; + ny,
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Z‘n'_[o 0} and Xf,'{o QJ' )

Apparently, this turns out to be a standard Variance
Component Model (VCM) which has been treated
extensively before, e.g. by Rao and Kleffe (1988) or
Searle et al. (1992). When following the approach by
Schaffrin (1983) that is based on the non-iterative
repro-BIQUUE nprinciple, the following nonlinear normal
equations result formally:

r(WVWY) - o(WVWY,) VHYWVWY}
w(WYWV,) o(WV,Wy,)|L6] [y WV, Wy ] (3)
where,
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is the “reduced weight matrix”, but derived from the
estimated dispersion matrix

£=62V,+63V, =62 (V,+4,V,) ®

for A,=6%182, respectively its inverse
>

~
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which may be further modified if necessary. We note
that ( £-W) would project the combined data vector
y into the residual vector

é:(iW)y=OA'12(VlW)y+6'22(V2W)y=l:%}+|:§j\ (7)
2
so that we obtain

yTWVjWy = (éfQ;léj )6';4 forje{1,2} ®)

on the RHS of (3). On the other hand, the matrix W
from (4) would more explicitly read:
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with N, =ATQ;'A, and N,, = A]Q;'A,; this leads to
the identities:

~ -1 ]
. |:In, "Q|—1A1 (Nn + ’112N22) AT} Y
WV, =47 1 ,
‘ﬂnQ;lAz (Nu + ’112N22) AlT | 0_ (10)
A . a -1
R 01 _’112Q1_1A1 (Nn +ﬂ12N22) A;
WV, =677 . ) . _1 ,
01 /112'{1,.2 _ﬂlzoglAz (Nn +/112N22) A-zr] (1 1)

as well as to the following expressions for the traces
on the LHS of (3), namely:

iy =0 (WY, WV, ) = L, —2 0N, (N + AN, )
+tr Nll (Nll + j’lZN22 )7l Nl] (Nll +2‘12N22 )_1
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Most importantly, the “redundancy identity” holds
true:

A + 205 i + A, = n—m (15)

as can be easily checked. By applying the formulas
(12-14) along with (8), the nonlinear normal equations
(3) for the estimated variance components become:
~2
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By combining (16-17), we arrive at
(87Q'¢,) + 4, (87Q;'€, ) = (n—m)-6; (18)

where the two quadratic forms in the residuals may
be computed from the estimated parameters in the
previous step via:

€Q,'¢, =y Q'y, - 2¢]E+E™N &, (19
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3. A New Algorithm for repro-BIQUUE

Now all ingredients are available to construct a
variety of algorithms to find the variance component
estimates in the case of two datasets. By taking the
ratio of (17) over (16), namely, we first get:

A (éngléz) n, - ’?'ntr N,, (Nn + ’?nsz )_]
)‘12' Tl Y ~ -1
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if t=tr N (Nn +/112sz) and finally:
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which needs iteration since 7 depends on A again.
After convergence, using 1 as initial value, the variance
component estimates are obtained from (18) using 4,,
or through

>
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using 7 before recomputing the parameter estimates
through (21) and the corresponding residuals through

& =

y,-A g for je{12}. 5)

The use of (23-24) has been most promising among
all algorithms that we tried for the solution of the
general system (3) so far. Here only one trace must
be computed, and that is from a mxm (and thus
comparatively small) matrix. Once the variance com-
ponents 87 and 6; have been determined, the parameter
estimates & follow from (21) and their dispersion
matrix approximately from:

(26)

It would be of great interest to find a way to
compute the trace 7 in (23) without having to invert
the matrix N, +/?12N22 itself, although it will be used
in (26) again.

4. An Example: A Geoid Patch Derived
from CHAMP and EGM-96

As an example, we shall consider geoid data on the
patch with ¢ € [-11.25°% +11.25°] latitude, and with
A € [100° 122.5°] longitude. The first dataset has
been derived from the EGM 96 field with a resolution
of 65 by 65, and the second one from CHAMP data
with a resolution of 33 by 33. Since, at this stage, all
data are gridded, suitable basis functions for the con-
tinuous geoid representation may include biharmonic
spline functions, Hardy’s multiquadrics (at fixed positions),
and further alternatives listed by Mautz et al. (2003).
Here we present the results for the multiquadric
functions.
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Fig. 1. Location of 256 center points of the multiquadric
functions (bold) and the distribution of the data
points.

Table 1. Valueé of variance components, their ratios and the sums of squared residuals

given in chapter 2.

Figure 1 illustrates the principal data point locations
relative to the center points of the multiquadric basis
functions while Figures 2 and 3 show the original
datasets of geoid undulations from EGM 96 and
CHAMP, respectively. An equally weighted combination
solution is presented in Figure 4 along with the two
residual fields in Figures 5 and 6. In contrast, Figure
7 shows the properly weighted combination solution,
and Figures 8 and 9 the respective residual fields for
both EGM 96 and CHAMP. For the estimation of the
variance components, essentially six iterations were
required as can be taken from the Table 1 where the
individual values are presented for &7 and 65, as well
as their ratio 4, and the respective sums of squared
residuals ( €;Q}'€)).

Finally, we investigated the relative increase in the
CPU time for evaluating the trace 7 in (2) when
increasing the number of parameters in the series

while iterating the formulas

Nradon 62 [m’] 62 [m'] A, Q%% m] | &Q.'8, ()
0 1.00000 1.00000 1.00000 4837.58 3993.32
1 1.20161 3.86916 0.31056 3892.44 5503.09
2 0.97549 5.15391 0.18927 3802.66 5863.84
3 0.95486 5.45193 0.17514 3794.55 5908.38
4 0.95305 5.48851 0.17364 3793.72 5913.14
5 0.95286 5.49241 0.17349 3793.63 5913.63
6 0.95284 5.49282 0.17347 3793.62 5913.69
7 0.95284 5.49286 0.17347 3793.62 5913.69
8 0.95284 5.49287 0.17347 3793.62 5913.69

geoid undulations - from EGM96

latitude ¢

110 115
longitude 2.

105

Fig. 2. Geoid undulations from EGM 96 on a 65 by 65
grid. The unit is [m].

geoid undulations - from CHAMP
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110 115
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Fig. 3. Geoid undulations from CHAMP on a 33 by 33
grid. The unit is [m].
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combined solution
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Fig. 4. Combined solution of EGM 96 and CHAMP with
equal weights ( 4, = 1). The unit is [m].

residuals with respect to EGM 96
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Fig. 5. Residuals of the equally weighted combined
solution with respect to EGM 96. The unit is [m].

residuals with respect to CHAMP

fatitude ¢

105 110 115

longitude 7

20

Fig. 6. Residuals of the equally weighted combined
solution with respect to CHAMP data. The unit
is [m].
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combined solution
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Fig. 7. Combined solution of EGM 96 and CHAMP with
proper weights ( 4, = 0.17). The unit is [m].

residuals with respect to EGM 96
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Fig. 8. Residuals of the properly weighted combined
solution with respect to EGM 96. The unit is [m].

residuals with respect to CHAMP

108

-
Q
ks
3
kS
-5
-10
100 105 110 115 120
longitude &

Fig. 9. Residuals of the properly weighted combined
solution with respect to CHAMP data. The unit
is [m].
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Fig. 10. CPU-time in [og(t)] (time ¢ in [s]) versus
number of parameters m in the model. Both
axes are in logarithmic scale.

expansion for the representation of the geoid undu-
lations. The results are provided in Figure 10.

5. Conclusions and Outlook

We have presented a new efficient algorithm that
allows us to merge two datasets with proper weighting
while only one trace needs to be computed, plus
another one for the next dataset, and so forth. The
example that merges geoid data from EGM 96 and
CHAMP, has shown successfully that weighting matters
by giving EGM 96 six times the influence over
CHAMP in this area.

Further studies are necessary to enhance the
efficiency of the algorithm even more (if possible) so
that truly global problems can be handled in the near
future. Also, the dependence of the estimated variance
ratio on the chosen resolution needs to be
investigated. In our example, the resolution was about
150 km which explains the relative preference of
EGM 96 over CHAMP in this case.
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