Comparison of Grain and Milling Properties between Waxy and Non-waxy Wheat

찰성밀과 보통밀간의 종실 및 제분특성비교

  • 이춘기 (농촌진흥청 작물과학원) ;
  • 남중현 (농촌진흥청 작물과학원) ;
  • 강문석 (농촌진흥청 작물과학원) ;
  • 구본철 (농촌진흥청 작물과학원) ;
  • 박광근 (농촌진흥청 작물과학원) ;
  • 김재철 (농촌진흥청 작물과학원) ;
  • 손영구 (농촌진흥청 작물과학원) ;
  • 박정화 (농촌진흥청 작물과학원) ;
  • 이영호 (농촌진흥청 작물과학원) ;
  • 손종록 (농촌진흥청 작물과학원) ;
  • 민용규 (충북대학교 식품공학과)
  • Published : 2005.12.01

Abstract

For the purpose to verify the grain and evaluate milling properties of Korean waxy wheat, com­parison analysis between waxy wheat lines and their respective maternal parents were performed. The waxy lines showed various grain yields of 4.76${\~}$5.79 t/ha depending on parentages, which were corresponding to $80{\~}96\%$ levels of their respective maternal parents. One thousand grain weights of waxy lines were also lighter than its respective part in its parentage by exhibiting 32.8${\~}$34.6 g compared to 32.9${\~}$45.2 g of their parents. Test weights of waxy lines and their parents were 720${\~}$798 g/l and 786${\~}$797 g/l, respectively. The proportions of the grains above 2.5 mm in width were higher in order of Keumgang, Olgeuru, Geuru, SW97134, Suwon 292, Woori, SW97105, and SW97110. Waxy lines exhibited low milling properties by showing the straight flour yields ranging from $61.8\%$ to $67.1\%$ compared with the yields of their parents ranging from $66.1\%$ to $72.5\%$; the waxy lines were significantly lower in first break flour (Bl) and first reduction flour (Rl) yields in the Buller test mill, while significantly higher in the yields of second and third reduction flour (R2 and R3) than the respective ones of their parent wheat.

1. Sodium dodecyl sulfate-polyacryl amide gel electro-phoresis (SDS-PAGE)결과에서 찰성밀 계통인 수원 292호, 찰 2, SW97110, SW97134, SW97105, SW97113, SW97106 및 SW97116 등은 모두 60kDa 부근에서의 band가 결여되었다. 2. 본 시험에 사용된 찰성밀은 모본인 보통밀 품종에 비해 종실수량이 $4{\~}20\%$ 낮고, 천립중과 용적중도 낮아 국내 적합형으로의 육종적 개량이 필요한 것으로 나타났다. 3. straight 분의 수율 분포가 보통밀의 경우 66.1(우리밀)${\~}72.5\%$(금강밀), 찰성밀의 경우 61.8(수원 292호)${\~}47.1\%$ (SW97110)범위였고, 각 찰성/메성 그룹내 높은 품종과 낮은 품종간의 제분율 차이는 $6.4\%$$5.3\%$를 보였다. 찰성밀 계통과 이들의 모본 품종간의 제분율 차이 역시 $1.5\%$ (SW97110 대 그루밀)에서 $5.8\%$ (SW97134 대 금강밀)까지 큰 변이를 보였는데, 공통적으로 모본보다 찰성밀 계통에서 제분율이 낮았다. 밀가루 회분함량에 있어서도 찰성밀이 보통밀과 같거나 (금강밀 대 SW97134) 보통밀보다 $0.13\%$까지 (우리밀 대 SW97105) 높아서 제분평점에서 찰밀이 보통밀보다 현저히 낮았다. 4. break roll와 reduction roll이 분획별 밀가루 수율에서 찰성밀 계통의 경우 보통밀 품종에 비해 Bl 분이 현저히 낮았으나 R2와 R3 밀가루는 월등히 높았다. Rl 분은 우리밀과 SW97105를 제외한 나머지 찰성 계통들에서 각각의 모본보다 일률적으로 낮았다. 밀가루 수율 감소와 직접적 연관이 있는 bran과 short의 비율에서는 전자의 경우 품종적 영향으로 찰성밀과 보통밀간의 변이가 뚜렷하지 않았으나 후자는 찰성밀이 보통밀 보다 월등히 높았다. 5. Rl 분의 수율이 찰성 계통의 경우 천립중과 용적중이 가장 낮은 수원 292호를 제외한다면 $37.1{\~}38.6\%$로서 비교적 큰 차이가 없는 반면에 보통밀에서는 우리밀, 올그루밀, 그루밀 및 금강밀이 각각 33.9, 36.7, 39.8 및 $40.7\%$로서 다양한 변이를 보임으로서 경${\cdot}$연질, 대${\cdot}$소립의 영향과 높은 상관관계 가능성을 암시해주었다. R1과 R2분에서는 찰성밀이 일률적으로 보통밀보다 높은 수율을 지님으로서 배유조직의 제분특성에서 찰성밀이 보통밀보다 분말화가 용이하지 않음을 나타내 주었다.

Keywords

References

  1. AACC. 1990. Approved Method of the American Association of Cereal Chemists. 8th ed. Method 44-15A. Method 46-13. Method 08-01. Method 55-10. Method 54-40A. AACC Method 56-61A
  2. Araki, E., H. Miura, and S. Sawada. 1999. Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor. Appl. Genet 98 : 977-984 https://doi.org/10.1007/s001220051158
  3. Araki, E., H. Miura, and S. Sawada. 2000. Differential effects of the null alleles at the three Wx loci on the starch-pasting properties of wheat. Theor. Appl. Genet 100 : 1113-1120 https://doi.org/10.1007/s001220051394
  4. Berman, M., M. I. Bason, R. EJlison, G. Peden, and C. W. Wrigley. 1966. Image analysis of whole grains to screen for flour-milling yield in wheat breeding. Cereal Chem. 73 : 323-327
  5. Bhattacharya, M., S. Erazo-Casterjon, D. C. Doehlert, and M. McMullen. 2001. Stailing of bread as affected by waxy wheat flour blends: TEKTRAN in Agricultural Research Service, USDA
  6. Chao, S., P. J. Sharp, A. J. Warhman, E. J. Warhman, and R. M. D. Koebner. 1989. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor. Appl. Genet. 78 : 495-504 https://doi.org/10.1007/BF00290833
  7. Epstein, J., C. F. Morris, and K. C. Huber. 2002. Instrumental texture of white salted noodles prepared from recombinant inbred lines of wheat differing in the three granule bound starch synthase (Waxy) genes. J. of Cereal Science 23 : 51-63
  8. Fujita, N., A. Wadano, S. Kozaki, K. Takaoka, S. Okabe, and T. Taira. 1996. Comparison of the primary structure of waxy proteins (Granule-bound starch synthase) between haploid wheats and related diploid species. Biochem. Genet 34 : 403-413 https://doi.org/10.1007/BF00570121
  9. Kiribuchi-Otobe, C., T. Nagamine, T. Yanagisawa, M. Ohanishi, and I. Yamaguchi. 1997. Production of hexaploid wheat with waxy endosperm character. Cereal Chemistry 74 : 72-74 https://doi.org/10.1094/CCHEM.1997.74.1.72
  10. Lineback, D. R. and V. F. Rasper. 1988. Wheat Carbohydrates. Pages 277-322 in: Wheat Chemistry and Technology (by Pomeranz ed), Vol I. american Association of Cereal Chemists, St. Paul, MN, USA
  11. Marshall, J., C. Sidebottom, M. Debet, C. Martin, A. M. Smith, and A. Edwards. 1996. Identification of the major starch synthase in the soluble fraction of potato tubers. Plant Cell. 8 : 1121-1135 https://doi.org/10.1105/tpc.8.7.1121
  12. Murai, J., T. Taira, and D. Ohta. 1999. Isolation and characterization of the three Waxy genes encoding the granule-bound starch synthase in hexaploid wheat. Gene 234 : 71-79 https://doi.org/10.1016/S0378-1119(99)00178-X
  13. Nakamura, T., M. Yamamori, M. S. Hidaka, and T. Hoshino. 1992. Expression of HMW Wx protein as Japanese common wheat (Triticum aestivum L.) cultivars in Japan. J. Breed 42 : 681-685 https://doi.org/10.1270/jsbbs1951.42.681
  14. Nakamura, T., M. Yamamori, H. Hirano, and S. Hidaka. 1993. Identification of three Wx proteins in wheat (Triticum aestivum L.). Biochem. Genet. 31 : 75-86 https://doi.org/10.1007/BF02399821
  15. Nakamura.T, M. Yamamori, H. Hirano, S. Hidaka, and T. Nagamine. 1995. Production of waxy (amylose-free) wheat. Mol. and General Genetics 78 : 495-504
  16. Nakamura, T., P. Vrinten, K. Hayakawa, and J. Ikeda. 1998. Characterization of a granule-bound starch synthase isoform found in the pericarp of wheat. Plant Physiol. 118 : 451-459 https://doi.org/10.1104/pp.118.2.451
  17. Pomeranz, V. 1988, Composition and functionality of wheat flour components. In 'Wheat Chemistry and Technology' (V. Pomeranz ed.), Vol II, American Association of Cereal Chemists, St. Paul, MN, USA pp 219-370
  18. Schuler, S. F., R. K. Bacon, P. L. Fenny, and E. E. Gbur. 1995. Relationship of test weight and kernel properties to milling and baking quality in soft red winter wheat. Crop Sci. 35:949-953 https://doi.org/10.2135/cropsci1995.0011183X003500040001x
  19. Seo, Y. W., B. H. Hong, and Y. W. Ha. 1998. Identification of granule bound starch synthase (GBSS) isoforms in wheat. Korean J. Crop Sci. 43(2) : 89-94
  20. Yamamori, M., S. Fujita, K. Hayakawa, J. Matsuke, and T. Yasui. 2000a. Genetic elimination of starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose. Theor. Appl Genet 101 : 21-29 https://doi.org/10.1007/s001220051444
  21. Yamamori, M. and N. T. Quynh. 2000b. Differential effects of Wx-A1, -B1 and -D1 protein deficiencies on apparent amylose content and starch pasting properties in common wheat. Theor Appl Genet 100 : 32-38 https://doi.org/10.1007/s001220050005
  22. Zhao, X. C. and P. J. Sharp. 1996. An improved ID SDS-PAGE method for the identification of three bread wheat 'Waxy' proteins. J. of Cereal Science 23 : 191-193 https://doi.org/10.1006/jcrs.1996.0019
  23. 이춘기, 남중현, 민용규. 2003. 국산 찰성밀의 이화학적 특성. 충북대 박사학위논문
  24. 작물시험장. 1996. 시험연구보고서(맥류편)
  25. 작물시험장. 1999. 시험연구보고서(맥류편)
  26. 작물시험장. 2000. 시험연구보고서(맥류편)