An Efficient Feature Point Detection for Interactive Pen-Input Display Applications

인터액티브 펜-입력 디스플레이 애플리케이션을 위한 효과적인 특징점 추출법

  • 김대현 (그래픽스연구원 TD연구팀) ;
  • 김명준 (이화여자대학교 디지털미디어학부)
  • Published : 2005.12.01

Abstract

There exist many feature point detection algorithms that developed in pattern recognition research . However, interactive applications for the pen-input displays such as Tablet PCs and LCD tablets have set different goals; reliable segmentation for different drawing styles and real-time on-the-fly fieature point defection. This paper presents a curvature estimation method crucial for segmenting freeHand pen input. It considers only local shape descriptors, thus, peforming a novel curvature estimation on-the-fly while drawing on a pen-input display This has been used for pen marking recognition to build a 3D sketch-based modeling application.

패턴 인식 연구 분야에서 많은 특징점 추출 알고리즘들이 개발되었지만, 태블릿 PC나 LCD 태블릿과 같은 펜-입력 디스플레이를 위한 인터액티브 애플리케이션들은 기존과는 다른 요구사항을 가진다. 사용자 마다 다른 다양한 스케치 스타일의 대해서 세그멘테이션 및 특징점 추출을 그림을 그리는 동안 실시간에 안정적으로 수행하여야 한다. 본 논문은 사용자로부터 자유로이 입력된 펜 입력을 분할(segmentation)하기 위해 필수적인 곡률(curvature) 측정 방법을 제안한다. 이 방법은 국소적인 모양 정보(shape descriptors)만을 사용하므로 펜 입력동안 곧바로(on-the-fly) 곡률을 측정할 수 있다. 본 알고리즘은 3차원 스케치 기반 모델링 애플리케이션에서 펜 마킹 인식을 위해서 사용되었다.

Keywords

References

  1. Tevfik M. Sezgin. Feature Point Detection and Curve Approximation for Early Processing of Free-Hand Sketches. PhD thesis, EECS of DC Berkeley, 2001
  2. A.M.N. Fu, H. Yan, and K. Huang. A curve bend function based method to characterize contour shapes. Pattern Recognition, 30(10):1661-1671, 1997 https://doi.org/10.1016/S0031-3203(96)00183-5
  3. F. Moktarian and A. K. Mackworth. A theory of multiscale-based shape representation for planar curves. IEEE Trans. Pattern Analysis Mach. Intell., 14(8):789-805, 1992 https://doi.org/10.1109/34.149591
  4. A. Ratterangsi and RT. Chin. Scale-based detection of corners of planar curves. IEEE Tran. Pattern Ana!. Mach. Intell., 14(4):430-449, 1992 https://doi.org/10.1109/34.126805
  5. R. Davis. Position statement and overview: Sketch recognition at mit. In American Association for Artificial Intelligence Spring Symposium on Sketch Recognition, 2002
  6. A. Rosenfeld and J.S. Weszka. An improved method of angle detection on digital curves. IEEE Trans. Comput., C-24:940-941, 1975 https://doi.org/10.1109/T-C.1975.224342
  7. C. H. Teh and R. T. Chin. On the detection of dominant points on digital curves. IEEE Trans. Pattern Analysis Mach. Intell., 11(8):859-872, 1989 https://doi.org/10.1109/34.31447
  8. M.J. Wang, W. Wu, L. Huang, and D. Wang, Corner detection using bending value. Pattern Recognition Letters, 16:575-583, 1995 https://doi.org/10.1016/0167-8655(95)00012-6
  9. Tracy Hammond and Randall Davis. Ladder: A language to describe drawing, display, and editing in sketch recognition. In Proceedings of IJCAI(International Joint Conference on Artificial Intelligence), August 2003 https://doi.org/10.1145/1185657.1185788
  10. J. Hoschek and D. Lasser. Fundamentals of computer aided geometric design. A.K. Peters, Ltd., 1989
  11. Adobe. Adobe Illustrator 10
  12. Dae Hyun Kim. A Sketch-based modeling interface for pen-input displays. PhD thesis, University Bremen, Shaker Verlag, ISBN 3-832203121-8, June 2004