Fingerprint Classification using Multiple Decision Templates with SVM

SVM의 다중결정템플릿을 이용한 지문분류

  • 민준기 (연세대학교 컴퓨터과학과, 생체인식연구센터) ;
  • 홍진혁 (연세대학교 컴퓨터과학과, 생체인식연구센터) ;
  • 조성배 (연세대학교 컴퓨터과학과)
  • Published : 2005.11.01

Abstract

Fingerprint classification is useful in an automated fingerprint identification system (AFIS) to reduce the matching time by categorizing fingerprints. Based on Henry system that classifies fingerprints into S classes, various techniques such as neural networks and support vector machines (SVMs) have been widely used to classify fingerprints. Especially, SVMs of high classification performance have been actively investigated. Since the SVM is binary classifier, we propose a novel classifier-combination model, multiple decision templates (MuDTs), to classily fingerprints. The method extracts several clusters of different characteristics from samples of a class and constructs a suitable combination model to overcome the restriction of the single model, which may be subject to the ambiguous images. With the experimental results of the proposed on the FingerCodes extracted from NIST Database4 for the five-class and four-class problems, we have achieved a classification accuracy of $90.4\%\;and\;94.9\%\;with\;1.8\%$ rejection, respectively.

지문분류는 대규모 자동지문식별시스템에서 지문을 카테고리별로 나누어 매칭시간을 줄이는데 유용하다. 지문을 5가지 클래스로 분류하는 헨리시스템을 기반으로 신경망이나 SYM(Support Vector Machines) 등과 같은 다양한 패턴분류 기법들이 지문분류에 널리 사용되고 있다. 특히 최근에는 높은 분류 성능을 보이는 SVM 분류기를 이용한 연구가 활발하다. 이진분류기인 SVM을 지문분류문제에 적용하기 위해서 본 논문에서는 새로운 분류기 결합모델인 다중결정템플릿(Multiple Decision Templates, MuDTs)을 제안한다. 이 방법은 클래스 구분이 모호한 지문영상들의 분류에서 단일 결합모델들의 한계를 극복하기 위해, 하나의 지문클래스로부터 서로 다른 특성을 갖는 클러스터들을 추출하여 각 클러스터에 적합한 결합모델을 생성한다. NIST Database4 데이타로부터 추출한 핑거코드에 대해 실험한 결과, 5클래스와 4클래스 분류문제에 대하여 각각 $90.4\%$$94.9\%$의 분류성능(거부율 $1.8\%$)을 획득하였다.

Keywords

References

  1. E. R. Henry, Classification and Uses of Finger Prints, London: Routledge, 1900
  2. A. Senior, 'A combination fingerprint classifier,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 10, pp. 1165-1174, 2001 https://doi.org/10.1109/34.954606
  3. H. C. Lee and R. E. Gaensslen, Advances in Fingerprint Technology. Elsevier, 1991
  4. M. Kawagoe and A. Tojo, 'Fingerprint pattern classficiation,' Pattern Recognition, vol. 17, no. 3, pp. 295-303, 1984 https://doi.org/10.1016/0031-3203(84)90079-7
  5. K. Karu and A. K. Jain, 'Fingerprint classification,' Pattern Recognition, vol. 29, no. 3, pp. 389-404, 1996 https://doi.org/10.1016/0031-3203(95)00106-9
  6. A. K. Jain, et al., 'A multichannel approach to fingerprint classification,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 4, pp. 348-359, 1999 https://doi.org/10.1109/34.761265
  7. Y. Yao, et al., 'Combining flat and structured representations for fingerprint classification with recursive neural networks and support vector machines,' Pattern Recognition, vol. 36, no. 2, pp. 397-406, 2003 https://doi.org/10.1016/S0031-3203(02)00039-0
  8. R. Cappelli, et al., 'Fingerprint classification by directional image partitioning,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 5, pp. 402-421, 1999 https://doi.org/10.1109/34.765653
  9. K. Rao and K. Black, 'Type classification of fingerprints: A syntactic approach,' IEEE Trans. Pattern Analysis Machine Intelligence, vol. 2, no. 3, pp. 223-231, 1980
  10. J.-H. Chang and K.-C. Fan, 'A new model for fingerprint classification by ridge distribution sequences,' Pattern Recognition, vol. 35, no. 6, pp. 1209-1223, 2002 https://doi.org/10.1016/S0031-3203(01)00121-2
  11. C.-W. Hsu and C.-J. Lin, 'A comparison of methods for multiclass support vector machines,' IEEE Trans. Neural Networks, vol. 13, no. 2, pp. 415-425, 2002 https://doi.org/10.1109/72.991427
  12. L. I. Kuncheva, et al., 'Decision templates for multiple classifier fusion: An experimental comparison,' Pattern Recognition, vol. 34, no. 2, pp. 299-314, 2001 https://doi.org/10.1016/S0031-3203(99)00223-X
  13. C. I. Watson and C. K. Wilson, Fingerprint Database. National Institute of Standards and Technology, Special Database 4, FPDB, 1992
  14. A. K. Jain, et al., 'Filterbank-based fingerprint matching,' IEEE Trans. Image Processing, vol 9, no. 5, pp. 846-859, 2000 https://doi.org/10.1109/83.841531
  15. R. M. Rifkin and A. Klautau, 'In defence of one-vs-all classification,' Jnl. of Machine Learning Research, vol. 5, pp. 101-141, 2004
  16. N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge University Press, 2000
  17. S. S. Keerthi and C.-J. Lin, 'Asymptotic behaviors of support vector machines with Gaussian kernel,' Neural Computation, vol. 15, no. 7, pp. 1667-1689, 2003 https://doi.org/10.1162/089976603321891855
  18. L. I. Kuncheva, Combining Pattern Classifiers, Wiley-Interscience, 2004
  19. Y. S. Huang and C. Y. Suen, 'A method of combining multiple experts for the recognition of unconstrained handwritten numerals,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17, no. 1, pp. 90-94, 1995 https://doi.org/10.1109/34.368145
  20. L. I. Kuncheva, 'Using measures of similarity and inclusion for multiple classifier fusion by decision templates,' Fuzzy Sets and Systems, vol. 122, no. 3, pp. 401-407, 2001 https://doi.org/10.1016/S0165-0114(99)00161-X
  21. K. Obermayer and T. J. Sejnowski, Self-Organizing Map Formation Foundations of Neural Computation, The MIT Press, 2001
  22. Q. Zhang and H. Yan, 'Fingerprint classification based on extraction and analysis of singularities and pseudo ridges,' Pattern Recognition, vol. 37, no. 11, pp. 2233-2243, 2004 https://doi.org/10.1016/j.patcog.2003.12.020