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Numerical modeling of defects nucleation in the liquid crystal devices
with inhomogeneous surface
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ABSTRACT

We model the nucleation and motion of defects in the liquid crystal display device with inhomogeneous surface by using fast
Q-tensor method, which can calculate scalar order parameter S and nucleation of the defect in the liquid crystal director field. In
order to model the defect, homeotropic aligned liquid crystal cell with step inhomogeneous electrode which has a height of 1 ym
is used. From the simulation, we can observe the nucleation and line of the defect from surface inhomogeneity and the experiment
is performed for confirmation.

Jli=
liquid crystal, defect, surface inhomogeneity

1. Introduction topologically inequivalent states has become important for
advanced liquid crystal modes, which can exhibit
An understanding of the dynamical behavior of liquid  excellent electro-optical characteristics, such as in-plane

crystal director including defects and transitions between  switch cell, patterned vertically aligned cell, multi-domain
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cell and so on. In order to understand defect dynamics,
generally, two and three dimensional calculations that can
include disclination for liquid crystal cells are important.

Previous papers [1,2] introduced fast Q-tensor method
which can handle defect dynamics in addition to normal
liquid crystal behavior and topological transition. Dickman
had shown that Oseen-Frank vector representation could
go directly to the Q-tensor representation if we use only
one 3rd-order Q component [3]. However, Dickman
considered only a constant value of order parameter S, so
that the results are only qualitative in their description of
defects. We have successfully shown that the fast
Q-tensor method calculate the order parameter by adding
the temperature terms in addition to the Q-tensor
representation of Oseen-Frank free energy terms [1].
Besides, we have derived an improved normalization
method for the faster calculations.

Defects in the LC director field sometimes are
occurred due to surface inhomogeneity in addition to
topologically inequivalent transition, because it can derive
high elastic energy around at “high changed position”.
Fig. 1 is a cartoon that shows the defect nucleation and
defect lines at prominence of the surface in the
homeotropic aligned liquid crystal director field [4].

In this paper, we model the defect from surface
prominence shown in Fig. 1 wusing fast Q-tensor
representation. In order to confirm the calculated result,
we compared the numerical modeling of the defect
nucleation with experimental phenomenon. In addition,
behaviors of the defect surface
inhomogeneity have calculated under applied voltages.

dynamical from

Fig. 1. Example of the decoration of mechanical
inhomogenerities at a prominence by a nematic liquid
crystal
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II. Numerical Modeling of a Fast Q tensor
method

The Gibb’s free energy density (fz) consists of elastic
energy density term of LC director (f) and external
electric free energy demsity term (fo). Simply, we can
achieve the total energy by integrating the calculated
Gibb’s free energy density. As I mentioned above,
Dickman successfully derived the Q-tensor form from the
vector form of the Frank-Oseen strain free energy density
as below [5],
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The electric free energy density for the Q-tensor form
is derived directly from fe = D-Ef2. From this, the
Q-tensor form for the electric free energy density can be
obtained as below [5],
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In order to calculate order parameter S in each grid,
we need to add a temperature energy term that, in the
absence of director field distortion, determine S as a
function of temperature because the order parameter S is
related directly to temperature. Basically, we can
formulate the thermal energy density by using a simple

polynomial expansion which is expressed as follows [6],
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Therefore, the total free energy density is the sum of
equations (1),(2) and (3), so that the Gibb’s free energy
density can be described as the sum of these three energy
densities.

In order to achieve the equilibrium state of the director
configuration at constant electric field, it is typical to use
the Euler-Lagrange equation. The following equations
show the Euler-Lagrange representation for the electric
potential and the director components under the Cartesian
solving Eq. (4), potential
distribution and LC configurations can be obtained,
respectively.
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The terms [folox and [f;]v rtepresent the functional
derivatives with respect to the Qx and voltage V,
respectively. By using these equations, we can calculate
the components of the 3 by 3 Q matrix and voltages in
each grid. Functional derivatives by each energy term are
described as follows [2],
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Where, T is current temperature, T,; represents the
nematic-isotropic transition temperature, and the constants
from A;
polynomial equation. Generally, polynomial coefficients

to Ay rtepresent the coefficients for the

may be dependent on nematic material. The polynomial
coefficients A; to A, have been adjusted so the T as to
be around 95 °C, so that we can see order parameter S
and all diagonalzed Q components go to O at T, from
typical value of room temperature (25°C). As a result, we
calculated that the polynomial coefficients A;, A; A; and
Ay are 0.79 J/Cm3, 0.784 J/Cm3, 0.61 J/Cm3 and 1474
J/ICm3, respectively.

The dynamic equation H(Qu/at) = -[fox can
provide the equilibrium state by recalculating the Q-tensor
and voltages in every time step in each grid. » is
rotational viscosity. To obtain an equilibrium state, we
applied relaxation method based on dynamic equation for

numerical calculation. As a result, the formulated relation

between Q tensor of next time ™1 and that of
current time(Jy, ” is as follows,
., - At
Qrn ™= QT+ ~ (fol o 6)

The order parameter S is related to Q-tensor in the
2(Q-Q)Y3 and we can get this
simultaneously with the Q components.

equation by s

[I. Numerical modeling for the defect
nucleation and dynamical behavior

De Gennes and Prost mentioned that the size of the
defect core might be approached to molecular dimensions
[6], so that we may encounter a serious problem for
observing the defect core in the LC configuration. In the
previous papers [1,2] we proposed a numerical method to
find defect core out by reducing the
coefficients A; to As
the coefficients, we can try to fit S as a function of

temperature

In order to achieve the value of
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temperature T to experimental data. Here, the coefficients
are adjusted so T, is at 95 °C, and so § as to be 0.6 at
room temperature. Specifically, the value of A; A, A;
and Ay as 0.79 J/Cm’, 0.784 J/Cm’, 0.61 J/Cm® and 1.474
J/Cm3, respectively, were determined. Otherwise, we need
to scale down the cell structure for calculation. These two
approaches obviously allow us to observe defect
generation and dynamic behavior. Figure 2 shows precise
temperature characteristics of an order parameter § when
we apply a voltage to the cell. It can be seen that by
adjusting the coefficient A; to A4 that give the ratio of
the coefficients of the temperature terms to the other
terms in the free energy equation, that the effect of a
voltage on the phase transition temperature can be
adjusted to meet an experimental result.

(7] Without Voltage
ES 0.8 - — o =—=With Voltage (5§ V)
0 ~ +« ~ With Voltage (5 V)
£
o 0.4+
Ao
©
o 2
@ 0.2 4 1
=l o
p— *
O 17
0.0 T Bl

60  -40 .20 O 20 4D
7 ,-T(Degree C)

Fig. 2. The calculated dependence of the order
parameter S on temperature T. The solid line
represents results when no voltage is applied, the
dash-dotted line and the dotted line represents the
calculated results when we apply the 5 V. For the
dotted lines, the values of A1-A4 have been changed
to 0.01 times the values.

Figure 3 (a) shows the geometry of the vertical
aligned cell to realize the cell structure as shown in Fig.
1. Used liquid crystal material was MLC-6608 of Merck
company (K11 = 16.7 pN, K22 = 7.3 pN, K33 = 181
pN, €1l =36, €1 = 7.8). Cell gap to keep LC layer
was 5 ym, and ZnO layer was used for step surface
configuration in a z-direction. Height of the ZnO layer
was 1ym. Figure 3 (b) shows microscopic photograph of
the cell with crossed polarizers. From the figure, we have
observed the light leakage from the edge of the electrode
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light leakage

(b)
Fig. 3. An experiment for observing defect nucleation;
(@) cell structure, (b) light leakage under crossed
polarizer

Electrode

(b)

Fig. 4. The geometry of a vertical alignment LC cell
for calculation; (@) cell structure, (b) LC alignment on
the inhomogeneous surface
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which implies nucleation of the defect core due to surface
inhomogeneity with step type of the edge.

Figure 4(a) shows the cell geometry for simulating the
defect nucleation from surface inhomogeneity. For the
calculation, the number of calculated layers was set to
50x50 in the x and z directions. LC directors on the surface
have aligned vertically and we assumed that the LC
directors at comer grids of the edge have average numerical
values of the neighbor directors as shown in Fig. 4(b).

Figure 5 shows calculated result using fast Q-tensor
method. In the figure, length of the lines is proportional

defect }_m

line

d3vVv
Fig.5. Two-dimensional director configuration for a vertical
alignment cell which includes inhomogeneous surface.
The orientations of the cylinders give the local director
orientation, which has very small order parameter S.

to amplitude of S, so that circled areas in the figure
imply the points of defect nucleation. Without applied
voltage as shown in Fig. 5(a), defect was nucleated along
z-axis at step side. This implies that high strain energy
may be stored along z-axis at step side because the LC
directors along surface in the z-axis meet LC directors in
bulk area with perpendicular state in a very short range.
Figure 5(b), (c) and (d) show the dynamical behavior of
the generated defects from surface inhomogeneity. It
moves to the bulk area along defect line by applying the
electric field. However, moving distance of the defects
may be very short (under several ym), so that we assume
that the generated defects due to step surface inhomogeneity
look stuck around the edge of the electrode even if we
apply electric field.

IV. Conclusions

Numerical modeling of the liquid crystal defect
from surface inhomogeneity has been presented by using
fast Q-tensor method. We modeled the defect nucleation
near by prominence of the surface in the homeotropic
liquid crystal director field. We confirm that defects can
be generated due to surface inhomogeneity in addition to
topologically inequivalent transition. For better optical
characteristics of the LC cell, various structure of the LC
cell may be applied to LC optical design and this may
cause the unpredictable optical loss because of generated
defects. A Fast

information of the order parameter S may help us to

Q-tensor method which provides

understand defect dynamics and to design LC cell better.
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