Characterization of $\alpha$-amylase, Total Alkaline Pretense, Trypsin and Triacylglycerol-lipase Activity of the Euryhaline Rotifer Brachionus rotundiformis

해수산 rotifer, Brachionus rotundiformis의 $\alpha$-amylase, total alkaline Protease, trypsin 및 triacylglycerol-lipase 활성 특성

  • Kwon O-Nam (Faculty of Marine Bioscience and Technology, Kangnung National University) ;
  • Park Heum-Gi (Faculty of Marine Bioscience and Technology, Kangnung National University)
  • 권오남 (강릉대학교 해양생명공학부) ;
  • 박흠기 (강릉대학교 해양생명공학부)
  • Published : 2005.11.01

Abstract

This study was investigated the condition of their maximum activity to assay the enzymes of rotifer, Brachionus rotundiformis의 $\alpha$-amylase, total alkaline Protease, trypsin and TG-lipase activities of rotifer were higher and more sensitive in phosphate-NaOH buffer than Tris-HCl buffer. $\alpha$-amylase, trypsin and TG-lipase activities were appeared the maximum at pH 8.0, and total alkaline protease activity showed the maximum activity at pH 7.0. $\alpha$-amylase activity showed the highest activity at $40^{\circ}C$, and total alkaline protease and trypsin activities were assayed the highest at $55{\~}60^{\circ}C$. However, TG-lipase activity was appeared the highest at $25{\~}30^{\circ}C$. The optimum substrate concentration of enzyme activity of a-amylase, total alkaline protease, rypsin and TG-lipase were $3.5\%$ starch, $\0.6%$ azo-casein, $87.5{\mu}M$ BApNA and 81.2 mM olive oil, respectively. The optimum reaction time of enzyme activity of $\alpha$-amylase, total alkaline protease, trypsin and TG-lipase were increased up to 40, 60, 30 and 25 min., respectively. The data obtained in this study could be used for the digestive enzyme research of rotifer, B. rotundiformis.

본 연구는 rotifer, B. rotundiformis를 대상으로 소화효소 실험을 하기 위해 이들이 가지고 있는 소화효소의 최고 활성 조건을 확인하기 위해 수행하였다. rotifer, B. rotundiformis의 $\alpha$-amylase, total alkaline Protease, trypsin 및 TG-lipase는 Tris-HCl buffer 보다 phosphate-NaOH buffer 안정적인 효소활성을 보였다. $\alpha$-amylase, trypsin 및 TG-lipase는 pH 8.0에서, total alkaline proteaset pH 7.0에서 높은 효소 활성을 나타내었다. $\alpha$-amylase 활성은 $40^{\circ}C$에서 가장 높은 활성을 보였으며, total alkaline pretense와 trypsin은 $55{\~}60^{\circ}C$의 온도에서 높은 활성을 나타내었다. 반면 TG-lipase 활성은 $25{\~}30^{\circ}C$의 낮은 온도에서 활성이 높았다. $\alpha$-amylase, total alkaline pretense, trypsin 및 TG-lipase의 활성의 적정 기질 농도는 $3.5\%$ starch, $\0.6%$ azo-casein, $87.5{\mu}M$ BApNA and 81.2 mM olive oil이었다. $\alpha$-amylase, total alkaline protease, trypsin 및 TG-lipase의 활성의 적정 반응시간은 40, 60, 30 and 25 min으로 나타났다. 본 연구 결과에서 얻어진 자료는 rotifer, B. rotundiformis의 소화효소 연구를 위한 기초 자료로 이용될 것이다.

Keywords

References

  1. Alarcon, M. D., F. J. Moyano and E. Abellan, 1998. Characterization and functional properties of digestive proteases in two sparids; gilthead seabream (Sparus aurata) and common dentex (Dentex dentex). Fish Physiol, and Biochem., 19, 257-267 https://doi.org/10.1023/A:1007717708491
  2. Araujo, A. B. D., T. W. Snell and A. Hagiwara, 2000. Effect of unionized ammonia, viscosity and protozoa contamination on the enzyme activity of the rotifer Brachionus plicatilis. Aquaculture Research, 31, 359-365 https://doi.org/10.1046/j.1365-2109.2000.00449.x
  3. Benitez, L. V. and L. B. Tiro, 1982. Studies on the digestive proteases of the milkfish Chanos chanos. Mar. Biol., 71, 309-315 https://doi.org/10.1007/BF00397047
  4. Borlongan, I. G, 1990. Studies on the digestive lipases of milkfish Chanos chanos. Aquaculture, 89, 315-325 https://doi.org/10.1016/0044-8486(90)90135-A
  5. Cahu, C. L. and J. Zambonino Infante, 1995. Maturation of the pancreatic and intestinal digestive functions in sea bass Dicen-trarchus labrax: effect of weaning with different protein sources. Fish Physiol. Biochem., 14, 431-437 https://doi.org/10.1007/BF00004343
  6. Chiu, Y. N., and L. V., Benitez, 1981. Studies on the carbohydrases in the digestive tract of the milkfish Chanos chanos. Mar. Biol., 61,247-254 https://doi.org/10.1007/BF00386667
  7. Chong, A., R. Hashim, L. -C. Lee and A. Ali, 2002a. Characterization of protease activity in developing discus Symphysodon aequidasciata larva. Aquaculture Reseach, 33, 663-672 https://doi.org/10.1046/j.1365-2109.2002.00702.x
  8. Chong, A., R. Hashim, L. -C. Lee and A. Ali, 2002b. Partial characterization and activities of protease from the digestive tract of discus fish (Symphysodon aequifasciata). Aquaculture, 203, 321-333 https://doi.org/10.1016/S0044-8486(01)00630-5
  9. Dabrowski, K. and J. Glogowski, 1977. Studies on the proteolytic enzymes of invertebrates containing fish food. Hydrobiologia, 52, 171-174 https://doi.org/10.1007/BF00036440
  10. Elert, E. V., M. K. Agrawal, C. Gebauer, H. Jaensch, U. Bauer and A. Zitt, 2004. Protease activity in gut of Daphnia magna: evidence for trypsin and chymotrypsin enzymes. Comp. Biochem. Physiol., 137B, 287-296
  11. Fernandez Gimenez, A. V., F. L. Garcia-Carreno, M. A. Navarrete del Toro, and J. L. Fenucci, 2001. Digestive proteinases of red shrimp Pleoticus muelleri (Decapoda, Penaeoidea): partial characterization and relationship with molting. Comp. Biochem. Physiol., 130B, 331-338
  12. Fernandez Gimenez, A. V., F. L. Garcia-Carreno, M. A. Navarrete del Toro, and J. L. Fenucci, 2002. Digestive proteinases of Artemesia longinaris (Decapoda, Penaeidae) and relationship with molting. Comp. Biochem. Physiol., 132B, 593-598
  13. Garcia-Ortega, A., J. Verreth, A. Van Hoornyck and H. Segner, 2000. Heat treatment affects protein quality and protease activity in decapsulated cysts of Artemia when used as starter food for larvae of African catfish Clarias gariepinus (Burchell). Aquaculture Nutrition, 6, 25-31 https://doi.org/10.1046/j.1365-2095.2000.00120.x
  14. Gawlicka, A., B. Parent, M. H. Horn, N. Ross, I. Opstad and O. J. Tottissen, 2000. Activitty of digestive enzymes in yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus): indication of readiness for first feeding. Aquaculture, 184, 303-314 https://doi.org/10.1016/S0044-8486(99)00322-1
  15. Han, X., R. Wang and J. Wang, 2002. Digestive gut structure and activity of protease, amylase, and alkaline phosphatase in Calanus sinicus during summer in the Yellow Sea and the East China Sea. J. Exp. Mar. Biol., 270, 131-146 https://doi.org/10.1016/S0022-0981(02)00017-5
  16. Harboe, T. and A. Mangor-Jensen, 1998. Time of first feeding of Atlantic halibut, Hippoglossus hippoglossus L., larvae. Aquaculture Research, 29, 913-918 https://doi.org/10.1046/j.1365-2109.1998.29120913.x
  17. Kunitz, M., 1947. Crystalline soybean trypsin inhibitor II. General properties. Journal of General Physiology, 30, 291-310 https://doi.org/10.1085/jgp.30.4.291
  18. Kurokawa, T., M. Shiraishi and T. Suzuki, 1998. Quantification of exogenous protease derived from zooplankton in the intestine of Japanese sardine Sardiniops melanoticus larvae. Aquaculture, 161, 491-499 https://doi.org/10.1016/S0044-8486(97)00296-2
  19. Ma, H., C. Cahu, J. Zambonino, H. Yu, Q. Duan, M. L. Gall, K. Mai, 2005. Activities of selected digestive enzymes during larval development of large yellow croaker (Pseudosciaena cro-cea). Aquaculture, 245, 239-248 https://doi.org/10.1016/j.aquaculture.2004.11.032
  20. Munilla-Moran, R. and F. Saborido-Rey, 1996a. Digestive enzymes in Marine species. I. Proteinase activities in gut from redfish (Sebastes mentella), seabream (Sparus aurata) and turbot (Scophthalmus maximus). Comp. Biochem. Physiol., 113B, 395-402
  21. Munilla-Moran, R. and F. Saborido-Rey, 1996b. Digestive enzymes in Marine species. II. Amylase activities in gut from seabream (Sparus aurata), turbot (Scophthalmus maximus) and redfish (Sebastes mentella). Comp. Biochem. Physiol., 113B, 827-834
  22. Munilla-Moran, R. and J. R. Stark, 1989. Protein digestion in early turbot larvae, Scophthalmus maximus (L.). Aquaculture, 81, 315-326 https://doi.org/10.1016/0044-8486(89)90156-7
  23. Munilla-Moran, R., J. R. Stark. and A. Barbour, 1990. The role of exogenous enzyme in digestion in cultured turbot larvae Scophthalmus maximus. Aquaculture, 88, 337-350 https://doi.org/10.1016/0044-8486(90)90159-K
  24. Schmidt, F. H., H. Stork and K. von Dahl. Lipase, photometric assay. (in) H. U. Bergmeyer (ed.), Methods of enzymatic analysis vol. 2, Academic Press, New York, pp. 819-823
  25. Somogyi, M., 1952. Notes on sugar determination. J. Bio. Chem., 195, 19-23
  26. Stottrup, J. G. and L. A. McEvoy, 2003. Live feeds in marine aquaculture. Blackwell Science, Oxford, pp. 318
  27. Tover, D., J. Zambonino Infante, C. Cahu, F. J. Gatesoupe, R. Vazquez-Juarez and R. Lesel, 2002. Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae. Aquaculture, 204, 113-123 https://doi.org/10.1016/S0044-8486(01)00650-0
  28. Warner, A. H. and C. Matheson, 1998. Release of protease from larvae of the brine shrimp Artemia franciscana and their potential role during the molting process. Comp. Biochem. Physiol., 119B, 255-263