Photo Imaging Process 기법 및 수치해석을 이용한 터널주변 파일기초거동에 대한 연구

A Study on the Pile Behaviour Adjacent to Tunnel Using Photo Imaging Process and Numerical Analysis

  • Lee Yong-Joo (Track Geotechnology Research Team, Track & Civil Engrg, Research Department, KRRI)
  • 발행 : 2005.11.01

초록

기존의 구조물 또는 서비스에 근접한 터널굴착이 지상공간의 부족으로 인해 종종 도심지에서 이루어지며, 이러한 터널굴착으로 발생하는 지반변위가 인접한 구조물에 손상을 발생시킨다. 본 연구는 근거리 사진계측을 이용한 2차원 모형 파일-지반-터널굴착 실험에 초점을 두었다. 실험장비 및 절차와 더불어 마찰이 있는 사질토 지반으로 간주하는 알루미늄 봉의 특성에 대해서 소개하였다. 실험결과, VMS와 EngVis 프로그램을 이용한 포토 이미지 프로세스는 터널굴착으로 인한 파일 선단부의 거동을 측정하는데 유용한 도구임을 잘 보여 주었다. 결론적으로 사진계측기술을 이용한 실내모형실험을 통해 영향권과 관련된 파일 선단부의 거동 데이터를 생성할 수 있다. 본 연구는 사질토 지반에서 터널굴착으로 인한 정규화 된 파일 선단부의 침하를 근간으로 하는 영향권을 제시한다. 이러한 영향권은 실내모형실험과 수치해석을 통해 규명하였다. 모형실험으로부터 정규화 된 파일 선단부의 거동은 수치해석 결과와 잘 일치하였다. 본 논문에서 제시된 영향권은 계획단계에서 터널시공 위치를 선정하는데 유용할 것으로 판단되나, 지반조건을 고려하는 실제 상황에 적용끈기 위해서는 모형파일과 모형터널의 크기에 대한 축척을 실제크기와 맞게 조정해야 한다.

In the congested urban areas, tunnelling close to existing structures or services often occurs due to the lack of surface space so that tunnelling-induced ground movements may cause a serious damage to the adjacent structures. This study focused on the two dimensional laboratory model pile-soil-tunnelling interaction tests using a close range photogrammetric technique. Testing equipments and procedures were Introduced, particularly features of aluminium rods regarded as the frictional granular material. The experimental result showed that the photo imaging process by the VMS and EngVis programs proved to be a useful tool in measuring the pile tip movements during the tunnelling. Consequently, the normalised pile tip movement data for the influence zones can be generated by the laboratory model tests using the Photogrammetric technique. This study presents influence zones associated with the normalized pile tip settlements due to tunnelling in the cohesionless material. The influence zones were Identified by both a laboratory model test and a numerical analysis. The normalized pile tip movements from the model test were in good agreement with the numerical analysis result. The influence zones proposed in this study could be used to decide the reasonable location of tunnel construction in the planning stage. However, the scale of model pile and model tunnel sizes must be carefully adjusted as real ones for practical application considering the ground conditions at a given site.

키워드

참고문헌

  1. Attewell, P. B. (1977), Ground movements caused by tunnelling in soil. Proceedings of International Conference on Large Movements and Structures, (ed. J. D. Geddes), pp.812-948, London
  2. Attewell, P. B., Yeates, J. & Selby, A. R. (1986), Soil movements induced by tunnelling and their effects on pipelines and structures. Glasgo: Blackie
  3. Bakker, K. J. and Beem, R. C. A. (1994), Modelling of the sheet pile wall test in Karlsruhe 1993. Numerical Methods in Geotechnical Engineering, Smith (ed.), Rotterdam, Balkema, pp.319-324
  4. Bowles, J. E. (1988), Foundation Analysis and Design, 4th Edition, McGraw-Hill Book Company, New York
  5. Britto, A. M. and Gunn, M. J. (1987), Critical state soil mechanics via finite elements, Chichester, U.K., Ellis Horwood Limited
  6. Chudleigh, I., Higgins, K. G., St John, H. D., Potts, D. M. and Schroeder, F. C. (1999), Pile-tunnel interaction problems. Tunnel Construction & Tunnelling '99, London, IMM, pp.172-185
  7. Cording, E. J. & Hansmire, W. H. (1975), Displacements around soft ground tunnels. 5th Pan American Congress on Soil Mechanics and Foundation Engineering, Tunnels in Soil, General Report, Session IV, Buenos Aires
  8. Jacobsz, S. W., Standing, J. R., Mair, R. J., Soga, K., Hagiwara, T. & Sugiyama, T. (2001), Tunnelling effect on driven piles. Proceedings of International Conference on Response of buildings to excavation-induced ground movements, pp.1-15. Imperial College, London: CIRIA
  9. Lee, Y. J. (2004), Tunnelling adjacent to a row of loaded piles. PhD Thesis, University College London, University of London
  10. Lee, Yong-Joo (2005), P-S Characteristics for End-bearing Pile in Granular Material (사질토 지반에서 선단지지말뚝의 P-S 특성). Jour. of the KGS, Vol.21, No.2 (제 21권 제 2호), pp.85-91
  11. Morton, J. D. & King, K. H. (1979). Effects of tunnelling on the bearing capacity and settlement of piled foundations. In Tunnelling '79 (ed. M. J. Jones), pp.57-68, London: IMM
  12. Potts, D. M. and Zdravkovic, L. (1999), Finite element analysis in geotechnical engineering-Theory, London, Thomas Telford
  13. Potts, D. M. and Zdravkovic, L. (2001), Finite element analysis in geotechnical engineering-Application, London, Thomas Telford
  14. Schroeder, F. C., Addenbrooke, T. I. & Potts, D. M. (2002), A numerical investigation into the impact of pile group loading on tunnels. Proc. 2nd Int. Conference on Soil Structure Interaction in Urban Civil Engineering, Vol.1, pp.205-212. Zurich: COST
  15. Woods, R. and Rahim, A. (2001), SAGE-CRISP Technical manual, Version 4. http://mycrisp.com/demo/TECHMAN.pdf The CRISP Consortium Ltd
  16. Yamamoto, K. & Kusuda, K. (2001), Failure mechanisms and bearing capacities of reinforced foundations. Geotextiles and Geomembranes 19, 127-162 https://doi.org/10.1016/S0266-1144(01)00003-6