Information-Theoretic Approaches for Sensor Selection and Placement in Sensor Networks for Target Localization and Tracking

  • 발행 : 2005.12.01

초록

In this paper, we describes the information-theoretic approaches to sensor selection and sensor placement in sensor net­works for target localization and tracking. We have developed a sensor selection heuristic to activate the most informative candidate sensor for collaborative target localization and tracking. The fusion of the observation by the selected sensor with the prior target location distribution yields nearly the greatest reduction of the entropy of the expected posterior target location distribution. Our sensor selection heuristic is computationally less complex and thus more suitable to sensor networks with moderate computing power than the mutual information sensor selection criteria. We have also developed a method to compute the posterior target location distribution with the minimum entropy that could be achieved by the fusion of observations of the sensor network with a given deployment geometry. We have found that the covariance matrix of the posterior target location distribution with the minimum entropy is consistent with the Cramer-Rao lower bound (CRB) of the target location estimate. Using the minimum entropy of the posterior target location distribution, we have characterized the effect of the sensor placement geometry on the localization accuracy.

키워드

참고문헌

  1. D. Culler, D. Estrin, and M. Srivastava, 'Overview of sensor networks,' IEEE Computer, vol. 37, no. 8, pp. 41-49, Aug. 2004
  2. S. Kumar, D. Shepherd, and F. Zhao, 'Collaborative signal and information processing in microsensor networks,' IEEE Signal Processing Mag., vol. 19, no. 2, pp. 13-14, Mar. 2002
  3. K. Hintz and E. McVey, 'A measure of the information gain attributable to cueing,' IEEE Tans. Syst. Man Cyb., vol. 21, no. 2, pp. 434-442, 1991 https://doi.org/10.1109/21.87090
  4. J. Manyika and H. Durrant-Whyte, Data Fusion and Sensor Management: A Decentralized lnformation-Theoretic Approach, NY: Ellis Horwood, 1994
  5. N. Xiong and P. Svensson, 'Multi-sensor management for information fusion: Issues and approaches,' Information Fusion, vol. 3, no. 2, pp. 163-86, June 2002 https://doi.org/10.1016/S1566-2535(02)00055-6
  6. J. Denzler and C. M. Brown, 'Information theoretic sensor data selection for active object recognition and state estimation,' IEEE Trans. Pattern Anal. Machine Intell., vol. 24, no. 2, pp. 145-157, 2002 https://doi.org/10.1109/34.982896
  7. J. Liu, J. Reich, and F. Zhao, 'Collaborative in-network processing for target tracking,' EURASIP J. Applied Signal Processing: Special Issues on Sensor Networks, vol. 2003, no. 4, pp. 378-391, Mar. 2003 https://doi.org/10.1155/S111086570321204X
  8. E. Ertin, J. Fisher, and L. Potter, 'Maximum mutual information principle for dynamic sensor query problems,' in Proc. IPSN 2003, Palo Alto, CA, Apr. 2003
  9. H. Wang, K. Yao, G. Pottie, and D. Estrin, 'Entropy-based sensor selection heuristic for target localization, in Proc. IPSN 2004, Berkeley, California, Apr. 2004
  10. H. Wang, L. Yip, K. Yao, and D. Estrin, 'Lower hounds of localization uncertainty in sensor networks,' in Proc. ICASSP 2004, Montreal, Canada, May 2004
  11. P. K. Varshney, Distributed Detection and Data Fusion, Secaucus, NJ: Springer-Verlag, 1996
  12. B. Grocholsky, 'Information-theoretic control of multiple sensor platforms,' Ph.D. Dissertation, The University of Sydney, 2002, available at http://www.acfr.usyd.edu.au
  13. N. Bergman, 'Recursive bayesian estimation: Navigation and tracking applications,' Ph.D. Dissertation, Departmentof Electrical Engineering, Linkoping University, Sweden, no. 579, 1999
  14. D. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello, 'Bayesian filtering for location estimation,' IEEE Pervasive Computing, vol. 2, no. 3, pp. 24-33, July-Sept. 2003
  15. C. E. Shannon, 'A mathematical theory of communication,' Bell Syst. Technical J., vol. 27, no. 6, pp. 379-423, 623-656, 1948
  16. R. E. Kalman, 'A new approach to linear filtering and prediction problems,' Trans. ASME-J. Basic Engineering, vol. 82, no. series D, pp. 35-45, 1960
  17. H. Cramer, Mathematical Methods of Statistics, Princeton, NJ: Princeton University Press, 1946
  18. C. R. Rao, 'Information and the accuracy attainable in the estimation of statistical parameters,' Bull. Calcutta Math. Soc., vol. 37, pp. 81-91, 1945
  19. R. McDonough and A. Whalen, Detection of Signal in Noise, 2nd ed., San Diego, California: Academic Press, 1995
  20. A. Savvides, W. Garber, R. Moses, and M. Srivastava, 'An analysis of error inducing parameters in multihop sensor node localization,' IEEE Trans. Mobile Computing, to be published
  21. J. Chen, R. Hudson, and K. Yao, 'Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the nearfield,' IEEE Trans. Signal Processing, vol. 50, no. 8, pp. 1843-1854, Aug. 2002 https://doi.org/10.1109/TSP.2002.800420
  22. L. Yip, J. Chen, R. Hudson, and K. Yao, 'Cramer-Rao bound analysis of wideband source localization and DOA estimation,' in Proc. SPIE 2002, vol. 4791, Dec. 2002, pp. 304-316
  23. K. Yao, R. E. Hudson, C. W. Reed, D. Chen, and F. Lorenzelli, 'Blind heamforming source localization on a sensor array system,' in AWAIRS project presentation at UCLA, Los Angeles, CA, Dec. 4, 1997
  24. A. Savvides, W. Garber, S. Adlakha, R. Moses, and M. B. Srivastava, 'On the error characteristics of multihop node localization in ad-hoc sensor networks,' in Proc. IPSN 2003, Palo Alto, CA, Apr. 2003