참고문헌
- BAR-LEV, S., LAVI, I. AND REISER, B., (1992). 'Byesian inference for the power law process', Annals of the Institute of Statistical Mathematics, 44(4), 623-639 https://doi.org/10.1007/BF00053394
- BARNARD, G. A., (1953). 'Time intervals between accidents-a note on Maguire, Pearson and Wynn's paper', Biometrika, 40, 212-213
- CHEN, M.-H., IBRAHIM, J. G. AND SHAO, Q.-M., (2000). 'Power prior distributions for generalized linear models', Journal of the Statistical Planning and Inference, 84, 121-137 https://doi.org/10.1016/S0378-3758(99)00140-8
- CHEN, M.-B., IBRAHIM, J. G., SHAD, Q.-M. AND WEISS, R. E., (1999). 'Prior elicitation for model selection and estimation in generalized linear mixed models', Journal of the Statistical Planning and Inference, 111, 57-76 https://doi.org/10.1016/S0378-3758(02)00285-9
- Cox, D. R. AND LEWIS, P. A. W., (1966). The Statistical Analysis of Series of Events, (London: Methuen)
- CROW, L. H., (1974). 'Reliability analysis of complex repairable systems, reliability and biometry, Proschan, F. and Serfling, R. J., Eds', SIAM, Philadelphia, 379-410
- DUANE, J. T., (1964). 'Learning curve approach to reliability monitoring', IEEE Transaction on Aerospace, 2, 563-566 https://doi.org/10.1109/TA.1964.4319640
- GUIDA, M., CALABRIA, R. AND PULCINI, G., (1989). 'Bayesian inference for a nonhomogeneous Poisson process with power intensity law', IEEE Transaction on Reliability, 38(5), 603-609 https://doi.org/10.1109/24.46489
- IBRAHIM, J. G. AND CHEN, M.-H., (2000), 'Power prior distributions for regression models', Statistical Science, 15, 46-60 https://doi.org/10.1214/ss/1009212673
- IBRAHIM, J. G., CHEN, M.-H. AND RYAN, L. M., (2000). 'Bayesian variable selection for time series count data', Statistical Sinica, 10, 971-987
- JARRETT, R. G., (1979). 'A note on the intervals between coal-mining disasters', Biometrika, 66, 191-193 https://doi.org/10.1093/biomet/66.1.191
- KIM, S. W. AND SUN, D., (2000). 'Intrinsic priors for model selection using an encompassing model with applications to censored failure time data', Lifetime Data Analysis, 6, 251-269 https://doi.org/10.1023/A:1009641709382
- KIM, K., KIM, S. W. AND KIM, H., (2003). 'Intrinsic Bayes factors for model selection in nonhomogeneous Poisson processes', Far East Journal of Theoretical Statistics, 11(1), 15-30
- KYPARISIS, J. AND SINGPURWALLA, N., (1985). 'Bayesian inference for the Weibull process with applications to assessing software reliability growth and predicting software failures' , Computer Science and Statistics: Proceeding of the 16th. Symposium on the interface of computer science and statistics, 57-64
- LINGHAM, R. T. AND SIVAGANESAN, S., (1997). 'Testing hypotheses about the power law process under failure truncation using intrinsic Bayes factors', Annals of the Institute of Statistical Mathematics., 49. 693-710 https://doi.org/10.1023/A:1003218410136
- MAGUIR, B. A., PEARSON, E. S. AND WYNN, A. H. A., (1952). 'The time intervals between in dustrial accidents', Biometrika, 39, 168-180 https://doi.org/10.1093/biomet/39.1-2.168
- ZELLNER, A., (1988). 'Optimal information processing and Bayes's theorem (with discussion)', The American Statistician, 42, 278-284 https://doi.org/10.2307/2685143