A SKEWED GENERALIZED t DISTRIBUTION

  • Published : 2005.12.01

Abstract

Skewed t distributions have attracted significant attention in the last few years. In this paper, a generalization - referred to as the skewed generalized t distribution - with the pdf f(x) = 2g(x)G(${\lambda}x$) is introduced, where g(${\cdot}$) and G (${\cdot}$) are taken, respectively, to be the pdf and the cdf of the generalized t distribution due to McDonald and Newey (1984, 1988). Several particular cases of this distribution are identified and various representations for its moments derived. An application is provided to rainfall data from Orlando, Florida.

Keywords

References

  1. ADCOCK, C. J. AND MEADE, N. (2003). 'An extension of the generalized skewed student distributions with applications to modeling returns on financial assets', Working paper, Department of Economics, University of Sheffield, UK
  2. ARELLANO-VALLE, R. B., GOMEZ, H. W. AND QUINTANA, F. A. (2004). 'A new class of skew-normal distributions', Communications in Statistics-Theory and Methods, 33, 1465-1480 https://doi.org/10.1081/STA-120037254
  3. ARNOLD, B. C. AND BEAVER, R. J. (2000). 'The skew-Cauchy distribution', Statistics and Probability Letters, 49, 285-290 https://doi.org/10.1016/S0167-7152(00)00059-6
  4. ARSLAN, O. AND GENC, A. I. (2003). 'Robust location and scale estimation based on the univariate generalized t(GT) distribution', Communications in Statistics- Theory and Methods, 32, 1505-1525 https://doi.org/10.1081/STA-120022242
  5. ARSLAN, O. AND GENC, A. I. (2006). 'The skew generalized t distribution as a scale mixture of the skew Box-Tiao distribution and its applications in robust statistical analysis', To appear in Statistics
  6. ARYAL, G. AND NADARAJAH, S. (2005). 'On the skew Laplace distribution', Journal of Information & Optimization Sciences, 26, 205-217 https://doi.org/10.1080/02522667.2005.10699644
  7. AZZALINI, A. (1985). 'A class of distributions which includes the normal ones', Scandinavian Journal of Statistics, 12, 171-178
  8. AZZALINI, A. AND CHIOGNA, M. (2004). 'Some results on the stress-strength model for skewnormal variates', Metron, 62, 315-326
  9. BLOM, G. (1958). Statistical Estimates and Transformed Beta-variables, John Wiley and Sons, New York
  10. BRANCO, M. D. AND DEY, D. K. (2001). 'A general class of multivariate skew-elliptical distributions', Journal of Multivariate Analysis, 79, 99-113 https://doi.org/10.1006/jmva.2000.1960
  11. CHAMBERS, J., CLEVELAND, W., KLEINER, B. AND TUKEY, P. (1983). Gmphical Methods for Data Analysis, Chapman and Hall
  12. CHEN, J. T., GUPTA, A. K. AND NGUYEN, T. T. (2004). 'The density of the skew normal sample mean and its applications', Journal of Statistical Computation and Simulation, 74, 487-494 https://doi.org/10.1080/0094965031000147687
  13. DENNIS, J. E. AND SCHNABEL, R. B. (1983). Numerical Methods for Unconstmined Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey
  14. GRADSHTEYN, I. S. AND RYZHIK, I. M. (2000). Table of Integrals, Series, and Products (sixth edition), San Diego: Academic Press
  15. GROTTKE, M. (1999). 'Generierung schiefer Verteilungen mittels Skalenparametersplittung', Working Paper, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Germany
  16. GUPTA, A. K. (2003). 'Multivariate skew t-distribution', Statistics, 37, 359-363 https://doi.org/10.1080/715019247
  17. GUPTA, A. K., CHANG, F. C. AND HUANG, W. J. (2002). 'Some skew-symmetric models', Random Opemtors and Stochastic Equations, 10, 133-140 https://doi.org/10.1515/rose.2002.10.2.133
  18. GUPTA, A. K. AND CHEN, T. (2001). 'Goodness-of-fit tests for the skew-normal distribution', Communications in Statistics-Simulation and Computation, 30, 907-930 https://doi.org/10.1081/SAC-100107788
  19. GUPTA, A. K., NGUYEN, T. T. AND SANQUI, J. A. T. (2004). 'Characterization of the skewnormal. distribution', Annals of the Institute of Statistical Mathematics, 56, 351-360 https://doi.org/10.1007/BF02530549
  20. GUPTA, R. C. AND GUPTA, R. D. (2004). 'Generalized skew normal model', Test, 13, 501-524 https://doi.org/10.1007/BF02595784
  21. HANSEN, B. E. (1994). 'Autoregressive conditional density estimation', International Economic Review, 35, 705-730 https://doi.org/10.2307/2527081
  22. HENZE, N. (1986). 'A probabilistic representation of the 'skew-normal' distribution', Scandinavian Journal of Statistics, 13, 271-275
  23. HUENG, C. J. AND BRASHIER, A. (2003). 'Investor preferences and portfolio selection: Is diversification an appropriate strategy?', Working Paper, University of Alabama, USA
  24. HUENG, C. J., BROOKS, R. AND McDoNALD, J. B. (2003). 'Forecasting asymmetries in stock returns: evidence from higher moments and conditional densities', Working Paper, Department of Economics, Western Michigan University, MI, USA
  25. IHAKA, R. AND GENTLEMAN, R. (1996). 'R: A language for data analysis and graphics', Journal of Computational and Gmphical Statistics, 5, 299-314 https://doi.org/10.2307/1390807
  26. IOANNIDES, M., KAT, H. M. AND THEODOSSIOU, P. (2002). 'Fitting distributions to hedge fund index returns', Working Paper, Rutgers University, USA
  27. KIM, H. -M. (2005). 'Moments of variogram estimator for a generalized skew t distribution', Journal of the Korean Statistical Society, 34, 109-123
  28. KOZUBOWSKI, T. J. AND PANORSKA, A. K. (2004). 'Testing symmetry under a skew Laplace model', Journal of Statistical Planning and Inference, 120, 41-63 https://doi.org/10.1016/S0378-3758(02)00503-7
  29. LISEO, B. AND LOPERFIDO, N. (2003). 'A Bayesian interpretation of the multivariate skewnormal distribution', Statistics and Probability Letters, 61, 395-401 https://doi.org/10.1016/S0167-7152(02)00398-X
  30. McDoNALD, J. B. AND NEWEY, W. K. (1984). 'A generalized stochastic specification in ecnometric models', Brigham Young University Mimeo
  31. McDoNALD, J. B. AND NEWEY, W. K. (1988). 'Partially adaptive estimation of regression models via the generalized t distribution', Econometric Theory, 4, 428-457 https://doi.org/10.1017/S0266466600013384
  32. MONTI, A. C. (2003). 'A note on the estimation of the skew normal and the skew exponential power distributions', Metron, 61, 205-219
  33. PEWSEY, A. (2000). 'The wrapped skew-normal distribution on the circle', Communications in Statistics-Theory and Methods, 29, 2459-2472 https://doi.org/10.1080/03610920008832616
  34. PRUDNIKOV, A. P., BRYCHKOV, Y. A. AND MARICHEV, O. I. (1986). Integrals and Series (volumes 1, 2 and 3), Amsterdam: Gordon and Breach Science Publishers
  35. SCHNABEL, R. B., KOONTZ, J. E. AND WEISS, B. E. (1985). 'A modular system of algorithms for unconstrained minimization', ACM Transactions on Mathematical Software, 11, 419-440 https://doi.org/10.1145/6187.6192
  36. THEODOSSIOU, P. (1998). Financial data and the skewed generalized t distribution. Management Science, 12, 1650-1661 https://doi.org/10.1287/mnsc.44.12.1650
  37. WAHED, A. S. AND ALI, M. M. (2001). The skew-logistic distribution. Journal of Statistical Research. 35. 71-80